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I. INTRODUCTION 1 

Q. Please state your name, address, and occupation. 2 

A. Roy W. Spencer 3 

Earth System Science Center 4 

The University of Alabama in Huntsville (UAH) 5 

320 Sparkman Drive 6 

Huntsville, Alabama 35805 7 

I have been a Principal Research Scientist at the University of Alabama in 8 

Huntsville since 2001, and prior to that I was a Senior Scientist for Climate 9 

Studies at NASA’s Marshall Space Flight Center (1997-2001). 10 

Q. Please describe your educational background and professional 11 

experience. 12 

A. I have a Ph.D in Meteorology, and twenty-five years of experience 13 

monitoring global temperatures with Earth orbiting satellites, nine years as 14 

the Science Team Leader for the AMSR-E instrument flying on NASA’s 15 

Aqua satellite, and seven years researching climate sensitivity with satellite 16 

measurements of the radiative budget of the Earth and deep ocean 17 

temperatures using a 1D climate model.  My CV, including a list of my peer-18 

reviewed publications, is attached as Spencer Exhibit 1. 19 

II. OVERVIEW OF OPINIONS 20 

Q. What are the purposes of your testimony in this proceeding and will you 21 

summarize your principal conclusions and recommendations? 22 

A. My testimony will address the validity of climate model projections of 23 

global and regional temperatures used in the determination of the social cost 24 

of carbon (SCC).  Three independent classes of temperature observations 25 

show that the climate models used by governments for policy guidance have 26 
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warmed 2 to 3 times faster than the real climate system over the last 35 to 55 1 

years, which is the period of greatest greenhouse gas emissions and 2 

atmospheric greenhouse gas concentrations.  Recent research suggests that 3 

the climate models are too sensitive to these emissions, and that increasing 4 

greenhouse gases do not cause as much warming and associated climate 5 

change as is commonly believed.  These results suggest that any SCC 6 

estimates based upon such models will be biased high. 7 

Q. Have you prepared a report that contains your opinions? 8 

A. Yes, details of my findings are attached as Spencer Exhibit 2.  A brief 9 

introduction of concepts and a summary of my findings follow, below. 10 

Q. Are you familiar with the history of the IPCC climate change models 11 

and predictions? 12 

A. Yes, I am familiar with the IPCC climate models and their predictions. 13 

III. TEMPERATURE DATA 14 

Q. How do IPCC model projections compare to observed temperature 15 

globally? 16 

A. The models, on average, produce surface warming rates at least twice those 17 

observed since the satellite record began in 1979.  Models, on average, 18 

produce deep-atmosphere (tropospheric) warming rates about 2-3 times 19 

those observed over the same period.  If we restrict the period to just the last 20 

18 years, the models have totally failed to explain the hiatus.  These are 21 

major discrepancies which have serious implications for using climate 22 

models to project future impacts on society. 23 

Q. Do you have an opinion as to why the IPCC model projections differ 24 

from observed temperature? 25 
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A. I believe that the models have been programmed to be too sensitive, that is, 1 

they produce too much warming for a given “forcing”, say, increasing 2 

atmospheric carbon dioxide.  This overestimation of climate sensitivity is 3 

due to the poor state of knowledge of feedbacks in the climate system. 4 

Q. How does the hiatus in warming reflect on the IPCC models? 5 

A. The hiatus was not predicted by the models or by the IPCC reports, and it 6 

remains largely unexplained.  No matter the cause, the hiatus invalidates the 7 

current model state-of-the-art for the purpose of climate change prediction, 8 

and for social cost of carbon estimates which rely upon those predictions. 9 

Q. How is global temperature measured and monitored, and what are the 10 

methods? 11 

A. Global temperatures over the time scales of interest in my testimony are 12 

measured with (1) surface-based thermometers, (2) weather balloons, also 13 

called radiosondes, and (3) satellite-borne passive microwave radiometers. 14 

Q. Are there any important differences between these data collection 15 

methods? 16 

A. Yes, surface thermometers are capable of directly measuring temperatures 17 

near the surface of the Earth, but tend to have long-term spurious warming 18 

effects over land from urbanization effects.  Only the U.S. and Europe are 19 

well sampled by thermometers, while most other countries have fair to poor 20 

coverage.  Oceans are not well sampled with surface thermometers, 21 

especially the southern hemisphere oceans where there is little ship traffic.  22 

Weather balloons and satellites measure deep-layer atmospheric 23 

temperatures, with scattered weather balloon stations restricted to land and 24 

island locations, while the satellites provide nearly complete global coverage 25 

(except for small regions at the poles).    26 
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Q. In light of these differences, what do you believe is the most reliable 1 

temperature measurement? 2 

A. I believe that the satellites provide the most detailed and reliable record of 3 

global temperature variations since they were first launched in late 1978.  4 

Q. Are recently observed temperature data relevant to determining the 5 

social cost of carbon? 6 

A. Yes, global temperature trends measured over recent decades are directly 7 

relevant to calculations of the social cost of carbon, which will be roughly 8 

proportional to the magnitude of warming trends.  As such, there would be 9 

no social cost of carbon if there were no warming trend. 10 

Q. How do climate change models use temperature data? 11 

A. Climate models use temperature data to test the models’ behavior and 12 

predictions, that is, to test whether the models are performing realistically.  13 

When large discrepancies between models and temperature observations are 14 

discovered, then the models must be modified to behave more realistically.  15 

Importantly, while all climate models mimic the average state of the climate 16 

system reasonably well, they so far have little skill in predicting what is 17 

needed for SCC estimates: climate change. 18 

Q. To what extent have global temperatures increased during the last 18 19 

years? 20 

A. Contrary to almost all expectations, there has been no statistically significant 21 

warming in either the RSS or UAH satellite data for the last 18 years, nor in 22 

the weather balloon data, leading to the well-know “hiatus” in global 23 

warming.  There has been relatively weak warming in the surface 24 

thermometer data over the same period of time, although its magnitude and 25 

statistical significance is questionable. 26 
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Q. Why do you believe there has been a lack of warming since 1997? 1 

A. I believe the lack of warming is due some combination of low climate 2 

sensitivity and a natural cooling effect, such as stronger La Nina event in 3 

recent years.   4 

IV. CLIMATE SENSITIVITY AND  PREDICTIONS OF FUTURE 5 

IMPACTS 6 

Q. What is climate sensitivity? 7 

A. Climate sensitivity is usually defined as the amount of global-average 8 

warming that would eventually result from a doubling of atmospheric carbon 9 

dioxide concentration relative to pre-industrial times. So, it is the magnitude 10 

of the temperature change resulting from a known level of “forcing”.  The 11 

term “forcing” implies an energy imbalance, such as would occur if a pot of 12 

water on the stove had the heat turned up. 13 

Q. How does climate sensitivity factor into models that try to predict future 14 

damages from anthropogenic carbon dioxide and other greenhouse gas 15 

emissions? 16 

A. Climate sensitivity is the most important variable that determines the level of 17 

global warming and associated predicted climate change in response to 18 

carbon dioxide emissions, or any other climate forcing.  If the real climate 19 

system is relatively insensitive, then future damages from carbon dioxide 20 

emissions will be small. 21 

Q. How are climate sensitivity values determined? 22 

A. Climate sensitivity is extremely difficult to determine, and its estimates are 23 

based upon past climate change events, specifically, how large of a 24 

temperature change they entailed, and the magnitude of the forcing that was 25 

presumed to cause them.   Unfortunately, even if we knew accurately how 26 
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much temperature change has occurred in the past (which we don’t), in 1 

order to calculate sensitivity we also must know accurately the magnitude of 2 

the forcing that caused it, a much more uncertain task. 3 

Q. Has any particular climate sensitivity value been proven? 4 

A. No one has been able to prove a value for climate sensitivity, partly because 5 

of the uncertainties in measurements of past temperature change events and 6 

knowledge of the magnitude of the forcing that caused those events.   7 

Q. Is there general agreement about climate sensitivity, and what does the 8 

current IPCC report say about climate sensitivity? 9 

A. There is very little agreement about equilibrium climate sensitivity (ECS), 10 

although most IPCC researchers believe it falls somewhere in the (fairly 11 

wide) range of 1.5 to 4.5 deg. C for a doubling of atmospheric CO2, despite 12 

recent global temperature trends which suggest lower sensitivity.  13 

Specifically, the latest (AR5) IPCC report states that there is “medium 14 

confidence that the ECS is likely between 1.5°C and 4.5°C”. 15 

Q. What does the latest, peer-reviewed research suggest for climate 16 

sensitivity? 17 

A. An increasing number of peer-reviewed studies are suggesting much lower 18 

climate sensitivity than the IPCC and its models assume, possibly as low as 19 

1 deg. C or less for a doubling of atmospheric CO2. 20 

Q. What are feedbacks and what is their impact on climate sensitivity? 21 

A. Climate sensitivity completely depends upon feedbacks, which quantify how 22 

things like clouds, water vapor, etc. change with warming to either reduce or 23 

amplify warming caused by a forcing.  Climate sensitivity is difficult to 24 

determine because feedbacks are difficult to determine. 25 
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How well do climate models explain recent warming? 

Future climate change scenarios relied upon for SCC calculations ultimately depend upon computerized 

climate models, which produce rates of warming that vary with each model’s equilibrium climate 

sensitivity (ECS).   Climate‐based calculations by governments tend to roughly follow the average of all 

projections produced by the variety of models tracked by the United Nations Intergovernmental Panel 

on Climate Change (IPCC), the latest report of the IPCC being the 5th Assessment Report
1
 (AR5) in 2013.

Of critical importance to the question of just how large the SCC should be, then, is how well the climate 

models’ projections of global (and regional) temperatures have fared when compared to observations. 

The three most‐cited methods for observing global‐ and regional‐average temperature changes are (1) 

surface‐based thermometers, (2) satellite observations of deep‐layer atmospheric temperatures, and (3) 

upper‐air weather balloons (radiosondes).    

While the models are truly global in extent, accurate comparisons between them and observations are 

somewhat hindered by less than complete global coverage by the observational networks: the satellites 

provide nearly complete global coverage, the surface thermometers provide less complete coverage 

(densest coverage in the U.S.), and weather balloons provide spotty coverage at best.  While the 

weather balloons provide the least‐dense coverage, they are immune to the urbanization effects
2
 which

are widely believed to cause spurious long‐term warming in the surface thermometer record. 

It has now been well established that recent global temperature trends from the observational networks 

are well below the IPCC average climate model projections upon which the SCC is based.   

This is true of all three types of observational networks.  The discrepancy is generally a factor of 2 to 3, 

that is, models tend to produce at least twice as much warming as the observations over the last several 

decades, which is the period during which human emissions and atmospheric concentrations have been 

the greatest. 

The global average surface temperature comparison between a 90‐model average
3
 and observations is

shown in Fig. 1, using the most recent thermometer dataset (HadCRUT4) used by the IPCC in their 



2 
 

assessments.  Note that the models have been warming at about twice the rate as the observations 

since the late 1990s. 

   

Fig. 1. Running 5‐year mean global average temperature changes since 1979‐1983, in models versus 
observations. 

 

The discrepancy between models and observations is also evident in regional comparisons, for example 

the U.S. Midwest corn belt temperatures
4
 (Fig. 2), which traditionally includes 12 states: Minnesota, the 

Dakotas, Wisconsin, Nebraska, Iowa, Illinois, Indiana, Ohio, Michigan, Kansas, and Missouri.  In this case, 

summertime (June‐July‐August) warming since 1960 has been about 2.4 times as strong in the models as 

in the observations.  While warming is of the greatest concern in the U.S. Midwest during the summer, 

due to excessive heat effects in cities and on agriculture, model projections of that warming over the 

last 50 years has been exaggerated. 



3 
 

 

Fig. 2. Global average surface temperature variations in the U.S. Corn Belt as projected by models (red) 
and as observed with thermometers (orange).  The corresponding global averages (blue) are also shown 
to illustrate how land areas like the Corn Belt are expected to warm faster than the oceans.   

When we change from surface temperatures to deep‐layer atmospheric temperatures, the discrepancy 

between models and observations becomes even larger.  For the mid‐troposphere, Fig. 3 shows that the 

models have warmed at least 3 times as fast as the satellites
5,6

 or weather balloons have measured 

since satellite monitoring began in 1979. 
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Fig. 3.  Yearly global average temperature during 1979‐2014 of the deep troposphere (approximately 
from the surface to 10 km in altitude) as measured by satellites and weather balloons, versus the 
average of 102 climate models tracked by the IPCC. 

These large discrepancies between the models and observations suggest a fatal flaw in the current 

climate model state‐of‐the‐art.  For models to have utility, they must be able to accurately predict some 

outcome, which they haven’t.  At best, they have produced warming in the last 50 years, and there has 

been some level of warming observed in the last 50 years, but such a trivial coincidence in an ever‐

changing climate system could have just as easily been predicted with the flip of a coin.  It’s when we 

examine the details of the predictions that we find failure: even NOAA has admitted
7
 that “The 

simulations rule out (at the 95% level) zero trends for intervals of 15 yr or more”, and yet we now stand 

at 18 years without warming in the real climate system. 

What is the Hiatus in Warming? 

Most of the disagreement between models and observations can be traced to a lack of warming after 

about 1997.  This “hiatus” in warming does not exist in the climate models, and suggests either (1) a 

natural cooling mechanism is canceling anthropogenic warming, or (2) the real climate system is less 

sensitive to greenhouse gas emissions than the models are, or both.  No matter the cause, the inability 

of the models to reproduce the hiatus raises serious concerns about the reliance of SCC calculations on 

climate model projections. 
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Why Are Models Producing Exaggerated Warming? 

There are a number of theories regarding why the models have produced too much warming.  The IPCC 

continues to stand by the models, claiming they will eventually be proved correct, although their most 

recent report (AR5) suggests they are starting to back off of their warming predictions somewhat.   

But there are now a number of published papers supporting the explanation that the climate system 

sensitivity (ECS) is not as high as assumed in the models, as Richard Lindzen is presenting in his 

testimony.  In other words, that adding CO2 to the atmosphere simply does not cause as much climate 

change as is popularly believed by most climate researchers. 

Our own paper
8 on the subject took into account deep‐ocean warming measurements and the observed 

natural climate forcing caused by El Nino and La Nina to arrive at an ECS of 1.3 C for a doubling of CO2, 

which is about 50% of the IPCC central estimate for ECS.   

It should be noted that, while most of the physical processes contained in climate models are indeed 

well understood, the feedback processes controlling ECS are highly uncertain…for example whether 

cloud changes will amplify (the IPCC position) or mitigate (my position) global warming and associated 

climate change.  So, while the average effect of clouds on the average climate system is reasonably well 

understood, the effect of clouds on climate change is only crudely represented in models, partly because 

our understanding of cloud feedbacks is so poor. 

There are many reasons why feedbacks (and thus climate sensitivity) are difficult to determine. First, 

feedbacks (a response of the system) are in general indistinguishable from forcings.  While net 

feedbacks oppose forcings, what we measure is the sum of the two in unknown proportions.  Secondly, 

there are many kinds of variations going on simultaneously in the climate system ‐‐ a volcano here, an El 

Nino there – each with its own unknown mixture of forcings and feedbacks.  Third, feedbacks due to 

different forcings are assumed to be the same…but they might not be.  The sensitivity to increasing CO2 

might be different from the sensitivity to a change in the sun’s brightness…we simply don’t know.  

Finally, the temperature response to a forcing takes time to develop…from months over land to many 

years over the ocean.  This further complicates connecting a temperature response to some previous 

forcing.  These are some of the reasons why determining feedbacks, and thus climate sensitivity, is so 

difficult. 
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Continuing with the example of clouds, we have demonstrated 
9,10

  both theoretically and 

observationally that the common belief that warming causes clouds to dissipate, leading to even more 

warming (thus implying positive cloud feedback) might be the result of confusion regarding cause versus 

effect, that is, forcing versus feedback.  There are natural decreases in global cloudiness which lead to 

warming, giving the illusion of positive cloud feedback even when negative cloud feedback exists.  This 

type of misunderstanding regarding the sign of cloud feedbacks might have been programmed into 

climate models, which then produce exaggerated warming in response to increasing atmospheric 

carbon dioxide.  This is only one example of the many potential pitfalls in modeling the response of the 

climate system to increasing carbon dioxide. 

What is the Bottom Line for Basing Current SCC Estimates on Climate Models? 

Reliance of SCC estimates on climate models which have demonstrable biases in their warming 

estimates is difficult to justify.  The utility of climate models for climate prediction must be based upon 

the models’ track record of success, that is, providing predictions with some demonstrable level of 

accuracy.  It is not sufficient for the models to reasonably replicate the average climate – they must 

provide useful predictions of climate change.  Since the models continue to produce warming rates at 

least twice that observed, it calls into the question the quantitative basis for using them as input to 

current Social Cost of Carbon estimates. 
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I. INTRODUCTION 1 

Q.  Please state your name, address, and occupation. 2 

A.  My name is Richard S. Lindzen.  My business address is Bldg. 54, 3 

Room 1724, M.I.T., Cambridge, Massachusetts 02139.  I am a 4 

meteorologist and the Alfred P. Sloan Professor of Meteorology in the 5 

Department of Earth, Atmospheric and Planetary Sciences at the 6 

Massachusetts Institute of Technology. 7 

Q.  Please describe your educational background and professional 8 

experience. 9 

A.  I obtained three degrees from Harvard University between 1960 and 10 

1964, culminating with a Ph.D. in Applied Mathematics in 1964.  11 

After I obtained my doctorate, I served in various meteorological 12 

research positions, including as a NATO post-doctoral fellow at the 13 

University of Oslo and as a research scientist at the National Center 14 

for Atmospheric Research.  For almost 50 years, I have taught 15 

meteorology at MIT, Harvard, the University of Chicago, and other 16 

distinguished universities.  My full professional history is detailed in 17 

my CV, which is attached as Lindzen Exhibit 1. 18 

II. OVERVIEW OF OPINIONS 19 

Q.  What are the purposes of your testimony in this proceeding?  20 

A.  The purposes of my testimony in this proceeding are to testify about 21 

scientific bases for concerns about increasing levels of CO2 and to 22 

assist in the proper calculation of the “social cost of carbon” (SCC). 23 

Q.  Could you summarize your opinions? 24 
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A. The global temperature predictive models relied upon by the 1 

Intergovernmental Panel on Climate Change (IPCC) are flawed, as 2 

they, among numerous other problems, overestimate increases in 3 

global temperatures. Recent, observational data proves that the IPCC 4 

models overestimate global temperature increases and overstate any 5 

effect of anthropogenic greenhouse gases relative to natural factors. 6 

Therefore, the economic damages models that rely on IPCC estimates 7 

are also flawed. 8 

 There is no indication that the Earth’s climate is “changing” in any 9 

manner that is not otherwise naturally-occurring and consistent 10 

with climate change patterns that occurred long before the recent 11 

concern over anthropogenic emissions. 12 

 The IPCC’s estimation of “climate sensitivity,” or the increase in 13 

temperature that will occur upon a doubling of atmospheric carbon 14 

dioxide concentrations, is done incorrectly. The IPCC’s 15 

conclusions are based on an incomplete and incorrect 16 

understanding of the impact of natural phenomena (e.g., clouds, 17 

aerosols, and volcanic activity) that are crucial to the determination 18 

of sensitivity.  19 

 Recent data and studies show that any increase in temperature 20 

upon a doubling of carbon dioxide concentrations will probably 21 

result in only mild warming at most, which will be beneficial to the 22 

planet and to society as a whole. 23 

 Current economic damages models attempting to determine a 24 

“social cost” of carbon are inherently biased high because they rely 25 

on IPCC’s flawed and overestimated conclusions regarding the 26 
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effect of increases of carbon dioxide concentrations on global 1 

climate.  2 

Q. Could you summarize your principal conclusions as to the 3 

concerns about climate change expressed by the United Nations 4 

Intergovernmental Panel on Climate Change (IPCC)? 5 

A. The bases for CO2 concerns are substantially overstated.  The last 6 

four United Nations Intergovernmental Panel on Climate Change 7 

(IPCC) reports have all been summarized with the iconic claim that 8 

man-made emissions account for most of the warming since the 9 

1970s.  But the warming referred to is small and is not something that 10 

can be perceived within the noise of normal climate variability. 11 

Moreover, the IPCC claim relies on climate models that suffer from 12 

serious flaws.  The models do not comport with observational data, 13 

and all IPCC models fail to predict the cessation of discernible 14 

warming over almost the past 20 years. The models appear to replicate 15 

the previous warming only by the fairly arbitrary inclusion of 16 

uncertain aerosols (reckoned to be anthropogenic emissions as well) 17 

in the models and choosing these to cancel excess warming. However, 18 

recent studies reduce the uncertainty associated with aerosols and 19 

make it implausible for them to serve as the “fudge factor” that 20 

climate modelers have assigned to them.  These recent aerosol studies 21 

limit climate sensitivity values (the amount by which a doubling of 22 

CO2 from preindustrial levels would raise equilibrium global 23 

temperatures) extremely unlikely to exceed 2C.   24 

Further, the IPCC’s argument for attributing the warming since the 25 

1970s to anthropogenic causes depended on the assumption that 26 
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natural variability is small.  In fact, natural variability (given the 1 

absence of warming over the past 18 years) is at least as large as any 2 

anthropogenic contribution.  Hence, the IPCC’s argument for the 3 

attribution of recent warming to anthropogenic factors breaks down. 4 

That is to say, we can no longer claim that man’s contribution to 5 

warming has been identified in the data. 6 

Q. Could you summarize your principal conclusions as to naturally 7 

caused climate change versus anthropogenic climate change? 8 

A. Earth’s climate is always changing.  Although the IPCC and others 9 

have pointed to warming since the 1970s, in fact, there was an almost 10 

indistinguishable period of warming from presumably non-man-made 11 

causes between 1895 and 1946.  The two periods (1895-1946 and 12 

1957-2008) are essentially indistinguishable, though the early one is 13 

acknowledged by the IPCC to be natural while the other is claimed to 14 

be due in large measure to humans. Put simply, there is nothing 15 

seemingly unusual or unprecedented about the recent warming 16 

episode, and like the earlier episode, it appears to have ended (in the 17 

case of the most recent episode, about 18 years ago). Of course, it has 18 

long been recognized that Earth has had many warm periods (the 19 

Medieval Warm Period, the Holocene Optimum, several interglacial 20 

periods, and the Eocene (which was much warmer than the present).  21 

Tellingly, climatologists in the past referred to the warm periods as 22 

‘optima’ since they were associated with thriving life forms.  Most 23 

plant forms evolved during periods of high CO2 (often ten times 24 

present levels). 25 
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Q. Could you summarize your principal conclusions as to climate 1 

“sensitivity values” and feedback mechanism? 2 

A. On its own (i.e., without the operation of so-called “feedback 3 

mechanisms”), a doubling of CO2 is generally claimed to lead to a 4 

warming of about 1C. This is generally considered too small to 5 

promote great concern. The IPCC’s projected climate sensitivity 6 

values (between 1.5C and 4.5C) rest on assumed feedback 7 

mechanisms that are unproven and speculative.  These asserted 8 

feedbacks relate to clouds (and water vapor), and, to a much lesser 9 

extent, changes in surface properties. However, as the IPCC 10 

acknowledges, all the feedbacks depend on unresolved features which 11 

have to be parameterized and are highly uncertain. Scientists do not 12 

agree on the existence and magnitude of these feedbacks, as the 13 

presidents of the National Academy of Sciences in the U.S. and the 14 

Royal Society in the U.K. have acknowledged. 15 

In my opinion, the IPCC’s estimated sensitivity values are 16 

substantially overstated because they depend on feedback effects that 17 

have not been shown to exist.  For example, studies show that 18 

warming leads to reduced cirrus cloud coverage, which acts to 19 

counteract the warming (i.e., acts as a negative feedback) by allowing 20 

more infrared radiation to escape into outer space.  This is known as 21 

the “Iris effect.” 22 

In my opinion, a climate sensitivity value of 2C or more is highly 23 

unlikely.  Evidence indicates that climate sensitivity may fall within a 24 

range of from about 0.85C to 1.5C.  I note that a value of 1.5C is 25 

within the IPCC’s own projections. 26 
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Q. Could you summarize your principal conclusions as to the relative 1 

roles of temperature versus fossil fuel emissions in determining 2 

increases in atmospheric CO2? 3 

A. Even the connection of fossil fuel emissions to atmospheric CO2 4 

levels is open to question.  In the ice core records of the ice ages, it 5 

appears that CO2 levels may follow temperature increases, rather than 6 

vice versa. Recent studies suggest that only about half of atmospheric 7 

CO2 concentrations may be due to fossil fuel emissions.  For 8 

example, although data from the Oak Ridge National Laboratory 9 

shows that CO2 emission rates of increase roughly tripled between 10 

1995 and 2002, the rate of increase in atmospheric CO2 11 

concentrations remained essentially unchanged during that time.  It 12 

appears that we are currently unable to relate atmospheric CO2 levels 13 

to emissions and even less to relate CO2 levels to temperature and still 14 

less to regional changes. 15 

In any event, the contribution of U.S. emissions is already less than 16 

those of the rapidly developing countries, and any reductions that the 17 

US makes (and much less that Minnesota makes) will have an 18 

undetectable influence on global mean temperature regardless of what 19 

climate sensitivity is and what geochemical model one uses. 20 

Q. Could you summarize your principal conclusions as to the 21 

concerns about droughts, flooding, other extreme weather 22 

phenomena, and sea ice? 23 

A. Concerns arising from the potential impact of global warming on 24 

drought, flooding, storminess, sea ice, and similar issues are largely 25 

unproven.  There is no evidence that these matters are increasing due 26 
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to warming (or in most cases increasing at all). Even where trends 1 

exist, such as summer Arctic ice cover, the reduction has reversed in 2 

the last few years; also, Antarctic sea ice has been increasing 3 

throughout the satellite era. Sea level rise has been occurring since the 4 

end of the last glaciation. Changes in instrumentation make it 5 

impossible to say whether the rate is actually increasing. Warming 6 

should actually reduce the incidence of extreme weather. 7 

Q. Could you summarize your principal conclusions as to the costs 8 

and benefits of controlling CO2 emissions? 9 

A. Over the past 200 years, there has been modest warming of about 10 

0.8C, and there has been a general improvement in the human 11 

condition.  Costs of warming are unproven and are generally based on 12 

model projections and speculations concerning impacts rather than 13 

observed data.  In contrast, the benefits of both warming and 14 

increased CO2 are clearer. CO2 is a plant fertilizer, and the increasing 15 

levels over the past two centuries are significant contributors to 16 

increased agricultural productivity.  Noteworthy is the fact that levels 17 

of CO2 below 150 parts per million by volume would probably end 18 

life on the planet – an unusual property for something commonly 19 

referred to as a pollutant. Warming also leads to decreased winter 20 

mortality.  Warming itself, at the levels that might realistically be 21 

anticipated (i.e., under 2C for the foreseeable future) is estimated to be 22 

net beneficial.  The policy risks of limiting the clean burning of fossil 23 

fuels are clear and are likely to exceed such risks of climate change as 24 

may exist, particularly when the economic and social impacts of 25 

higher energy prices are considered. 26 
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Q. Have you prepared a report that contains your opinions? 1 

A. Yes.  My report is attached as Lindzen Exhibit 2. 2 

Q. Are you familiar with the history of the IPCC climate change 3 

models and predictions? 4 

A. Yes.  I have been involved with the IPCC models, predictions, and 5 

reports for more than 20 years.  In 1995, I contributed to the IPCC 6 

Second Assessment.  In 2001, I was a lead author in a chapter of the 7 

IPCC report. 8 

Q. Do you have an opinion regarding their accuracy or their 9 

suitability as a basis for regulatory action to reduce greenhouse 10 

gas emissions? 11 

A. Yes.  Because the models use an inappropriately high climate 12 

sensitivity and do not properly address feedbacks, aerosols, and other 13 

factors and issues outlined in my report, the IPCC models should not 14 

be used to estimate the social cost of carbon.  They do not provide 15 

accurate or reliable information.  Indeed, the IPCC insists that its 16 

model results be considered as ‘scenarios’ rather than predictions. 17 

III. CLIMATE SENSITIVITY 18 

Q. What is climate sensitivity? 19 

A. Climate sensitivity is a measure of the change in global equilibrium 20 

temperature (i.e., the amount of warming) that would result if CO2 21 

concentrations doubled from preindustrial levels of approximately 275 22 

ppm.   23 

Q. Has any particular climate sensitivity value been proven? 24 

A. No. 25 

Q. What does the current IPCC report say about climate sensitivity? 26 
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A. The IPCC notes that its models display a sensitivity range between 1 

1.5C and 4.5C.   2 

Q. What is the role of feedback mechanisms in determining climate 3 

sensitivity? 4 

A. Without feedback mechanisms (primarily the effect of water vapor), a 5 

doubling of CO2 concentrations is generally expected to lead to an 6 

increase of 1C.  This amount of warming is generally considered too 7 

small to be of great concern. Accordingly, the IPCC projections 8 

depend heavily on the existence of positive feedback mechanisms, 9 

which are speculative and unproven. 10 

Q. What does the latest, peer-reviewed research suggest for climate 11 

sensitivity values? 12 

A. Recent research demonstrates that a climate sensitivity value of 2C or 13 

more is highly unlikely.  Evidence indicates that climate sensitivity 14 

may fall within a range from about 0.85C to 1.5C.   15 

Q. What are aerosols and what is their impact on climate sensitivity? 16 

A. Aerosols are minute particles suspended in the atmosphere.  Climate 17 

modelers have often arbitrarily included the effects of aerosols in their 18 

models and used them essentially as a “fudge factor” to “cancel” 19 

excess warming and allow their models to more closely match 20 

observational data.  However, new evidence, including a recent paper 21 

(Stevens, 2015), reduces the uncertainty that previously allowed 22 

climate modelers to use aerosols to cover up deficiencies in the 23 

models.  These studies point to low climate sensitivity values which 24 

would imply minimal danger or even net benefit from climate change. 25 
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IV. TEMPERATURE 1 

Q. What is the Earth’s experience with warm periods? 2 

A. Earth has had many warm periods, including the Medieval Warm 3 

Period, the Holocene Optimum, several interglacial periods, and other 4 

periods.  During the Eocene, the Earth was much warmer than it is 5 

today.  This is no dispute about the existence of natural warming in 6 

the thermometric record.  Climate always changes. 7 

Q. Have observed temperatures been consistent with IPCC model 8 

predictions? 9 

A. No.  Figure 9 of my testimony demonstrates that the models have 10 

consistently “run hot” or significantly overestimated warming for 11 

decades.  There has been no warming for at least the last 18 years, 12 

which the models cannot explain.  Further, the models produce 13 

substantially divergent results for the future.  The models do not 14 

provide a reliable basis for predictions. 15 

V. EXTREME WEATHER, CHANGES IN SEA ICE, AND OTHER 16 
PHENOMENA 17 

Q. Are there other indicators of climate change associated with rising 18 

CO2 emissions, such as sea level rise, unusual storm activity, or 19 

Arctic ice cover losses? 20 

A. No.  There is no evidence of increases in hydro-meteorological 21 

disasters. Antarctic sea ice has been increasing throughout the satellite 22 

era, and summer artic ice cover reduction has reversed in the last few 23 

years.  Sea level rise has been occurring since the end of the last 24 

glaciation.  The primary driving force for storm development is the 25 

temperature difference between the tropics and the poles, a difference 26 
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that should be decreasing if there is global warming, which is 1 

supposed to be greater at the poles.  2 
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19 1. Bases for CO2 concerns – climate sensitivity.
20
21 The last 4 United Nations Intergovernmental Panel on Climate Change reports have all been
22 summarized with the iconic claim that man-made (ie anthropogenic) emissions account for most
23 of the warming since the 1970's.  This is usually rephrased to claim that the earth is warming and
24 man is responsible.  Each report claims slightly increased subjective confidence in this claim, and
25 the claim is generally presented as the reason for concern (viz IPCC, 2013).  This section
26 examines this claim in detail.  We note several crucial problems with the claim:
27
28 ! Even if true, the warming referred to is small and (as shown in Section 2) not unique.
29
30 ! The claim refers to models with markedly different sensitivities to added greenhouse
31 gases. Yet all the models appear to replicate the recent warming.  This is achieved by
32 fairly arbitrary inclusion of uncertain aerosols (reckoned to be anthropogenic emissions as
33 well) in the models and choosing these to cancel excess warming.  Recent studies reduce
34 the uncertainty associated with aerosols and limit one to low sensitivity which would
35 imply minimal danger or even net benefit.
36
37 ! The claim explicitly depends on other (natural) sources of climate change are small.  The
38 assumption is based on the fact that the models used display very little natural variability,
39 but this is contradicted by the absence of warming in the data for the past 18 years. 
40 Therefore, even the argument for the attribution of the small warming to anthropogenic
41 emissions breaks down.
42
43 The first thing that has to be recognized is that increasing CO2 and even warming per se are not
44 bases for concern.  Neither is the unquestioned existence of the greenhouse effect.  Concern
45 depends on at least two factors: 1. Warming due to increasing CO2 has to be large compared to
46 natural variability; and 2. There has to be a clear connection between such warming and concerns
47 over such matters as extreme weather.  The second item is the focus of Section 5. In addition,
48 there has to be a clear quantitative relation between specific emissions of CO2 and CO2 levels in
49 the atmosphere.  This is discussed in Section 4.  With respect to the first item, the fact that the
50 greenhouse effect implies that additional CO2 will cause some warming is insufficient evidence
51 for concern.  The amount of warming associated with specific additions of CO2 is of crucial
52 importance.  This is what is referred to as climate sensitivity.  As a matter of convention,
53 sensitivity is often defined as the equilibrated warming resulting from a doubling of CO2. 
54 Because of the logarithmic dependence of warming on CO2 concentration, it does not matter
55 what the base value is for a doubling.  That is to say, doubling from 1000 ppmv to 2000 ppmv
56 will have the same value as doubling from 280 ppmv to 560 ppmv.  Because of the heat capacity
57 of the oceans, it takes time to reach equilibrium, and that time increases sharply as the
58 equilibrium sensitivity increases.  The characteristic time to reach equilibrium is generally taken
59 as the time to reach about 2/3 of the equilibrated value.  For a sensitivity of 5 degrees C, this is
60 on the order of many decades, while for a sensitivity of 1 degree C, it is only on the order of a
61 few years.  For sensitivities less than 1 degree C, the response is almost immediate.  For certain
62 purposes, therefore, one sometimes uses transient sensitivity: ie, the warming reached by a
63 certain date (for example by 2100).
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Climate claims are produced by models wherein the equations for the motion, composition and 
radiative transfer are numerically approximated.  These models are referred to as General 
Circulation Models known as GCMs (though these days it is often assumed that GCM stands for 
Global Climate Model).  IPCC claims are based on a large number of such models – differing 
pronouncedly in quality.   In climate GCMs, climate sensitivity is nominally determined by the 
model based on its approximations and parameterizations of the physics.  Note that the processes 
determining sensitivity are cloud scale processes that none of the models can actually resolve. To 
resolve processes like clouds, turbulence, etc. would require resolution on the order of meters or 
less.  The models usually don’t have resolution better than 100 km.  Thus, they require fairly ad 
hoc approximations when dealing with unresolved scales.  Despite this, the models are indeed 
complex.  This complexity is needed, in principle, to provide information on regional scales, and 
to deal with other details.  However, the success of models to provide regional information is 
doubtful since different models differ even with respect to sign on such matters.  This is 
acknowledged in the Working Group 1 reports of the IPCC (Working Group 1 deals with the 
science as opposed to Working Group 2 which deals with the impacts based on usually worst 
case scenarios or Working Group 3 which deals with mitigation).

80
81 If one wishes to focus on global mean temperature, and assumes climate sensitivity, then much
82 simpler models suffice. These very simple models are known as energy balance models.  Such
83 models are used by the IPCC for scenario development.  We will use such a model to examine
84 the problems in inferring sensitivity from the observed temperature change.  That said, we will
85 also see that the observed temperature is most easily simulated with low sensitivity – that is to
86 say that such models do not require extreme adjustments with aerosols in order to simulate
87 observations.
88
89 The IPCC presents estimates of radiative forcing (a precise definition of radiative forcing is given
90 in Section 3) by both greenhouse substances and substances that reflect incoming solar radiation. 
91 Their estimates are shown in Figure 1. It is the balance between the net incoming solar radiation
92 and the outgoing long wave (infrared) radiation emitted by greenhouse substances that determine
93 the system temperature.  Note that greenhouse substances actually cool the system.  The
94 greenhouse effect stems from the fact that increasing the amount of greenhouse gases elevates the
95 level from which they cool, and since the temperature of the troposphere (the lowest 7-16 km of
96 the atmosphere depending on latitude) decreases with height, the new level is cooler, and,
97 therefore emits less radiation.  This reduction in cooling is what is commonly referred to as
98 warming.
99

100 Several things should be noted from Figure 1.  First, CO2 is not the only anthropogenic
101 greenhouse gas.  While it is the most important one, it contributes (as of 2014) only about 1.7
102 Watts per square meter.  Other gases bring the value to about 2.8 Watts per square meter.



Figure 1. Radiative forcing from IPCC (2013). The green line was added to the aerosol
contribution to indicate that aerosols can cause the freezing of supercooled water into ice particles
and thus contribute to warming as well as cooling.

103 The second thing to note is that aerosols are a poorly known source of cooling (though the latest
104 IPCC report has substantially reduced this uncertainty), and a recent paper (Stevens, 2015)
105 further reduces the uncertainty.  This reduced uncertainty will prove important to our discussion
106 since the uncertainty allowed modelers to use aerosols to cancel excess warming.  Finally, it
107 should be noted that all the items in Figure 1 represent small perturbations to the overall radiative
108 budget which involves balances between insolation and outgoing infrared radiation on the order
109 of 200 Watts per square meter.  The large values are associated with what are far and away the



Figure 2. Total greenhouse forcing as function of time.

Figure 3. Volcanic forcing (Sato index from NASA/GISS )

110 most important greenhouse substances which are water vapor and clouds.  These will be of
111 central importance when we turn to what determines climate sensitivity in Section 3: namely
112 feedbacks.
113
114 Figure 2 shows a smoothed
115 time series for the evolution
116 of anthropogenic greenhouse
117 forcing (including all IPCC
118 sources).   The smoothing
119 simply means that small
120 irregularities in the evolution
121 of greenhouse forcing are
122 ignored; they are irrelevant to
123 our discussion.  The value
124 reached in 2014 is 2.8 Watts
125 per square meter, which is
126 about 75% of what is
127 commonly expected from a
128 doubling of CO2.  Most
129 models also include forcing
130 by volcanoes.  This forcing is
131 shown in Figure 3.  We
132 calculate the response to
133 these forcings using the
134 energy balance model
135 described in Lindzen and
136 Giannitsis (1998).  This is
137 effectively the same model
138 widely used for scenario
139 development by the IPCC.
140 Figure 4 shows the response
141 to anthropogenic greenhouse
142 gases.  Recall that global
143 mean temperature (or, more
144 accurately, global mean
145 temperature anomaly)
146 increased about 0.75C since
147 the end of the little ice age in
148 the 19th Century.  We see that
149 models with sensitivity in
150 excess of about 1C all show
151 greater warming.  However,
152 the difference between higher
153 and lower sensitivity is less
154 than one might expect because higher sensitivities are associated with slower responses.  This



Figure 5. Temperature response to volcanic forcing.

Figure 4. Temperature response to greenhouse forcing.

155 why transient
156 sensitivity is smaller
157 than equilibrium
158 sensitivity. Figure 5
159 shows the response to
160 volcanic forcing. 
161 Volcanic activity
162 tends to cluster
163 (which is typical of
164 random processes). 
165 For low climate
166 sensitivity, the
167 response to volcanos
168 is largely restricted to
169 the life time of the
170 volcanoes, but for
171 high sensitivity, the
172 response persists for a
173 long time, and
174 provides a significant
175 contribution to
176 cooling.  This serves
177 to reduce the
178 difference in total
179 response
180 corresponding to
181 different sensitivities
182 as we see in Figure 6
183 which shows the
184 response to combined
185 greenhouse and
186 volcanic forcing.  Of
187 course, once again all
188 sensitivities above 1C
189 exceed the observed
190 warming.  However,
191 modelers use aerosols
192 to reduce the warming
193 as shown in Figure 7. 
194 Table 1 shows what
195 fraction of the
196 greenhouse warming
197 had to be removed in order achieve modest agreement with observations.  Notice that the aerosol
198 compensation needed to achieve agreement by the present does not increase much for high
199 sensitivities because of the fact that response time increases with sensitivity.  However, given the



Figure 6. Temperature response to sum of greenhouse and volcanic
forcing.

Figure 7. Temperature response ‘adjusted’ with aerosols.

200 recent results of Stevens
201 (2015), the aerosol
202 compensation called for
203 by high sensitivity models
204 might not be available. 
205 Thus, it will not be
206 possible to bring these
207 models into agreement
208 with observations.  The
209 IPCC claims significant
210 confidence that only by a
211 combination of
212 greenhouse warming and
213 aerosol cooling (both
214 subsumed under the
215 ambiguous label of
216 anthropogenic influences)
217 can the observed warming
218 of the period since the
219 1970's be accounted for. 
220 However, their claim is
221 based on the fact that the models have very little internal variability so that almost all of the
222 recent warming can be attributed to anthropogenic forcing.  Natural internal variability refers to
223 changes in temperature that occur without external forcing.  Such changes occur, for example
224 when heat is exchanged between the surface and the deeper oceans, leaving the surface
225 disequilibrated.
226
227 The behavior of the temperature in Figure 7 does not resemble the observed temperature in detail
228 because modelers apply
229 adjustments in a variable
230 fashion to achieve better
231 agreement.  Observed
232 temperature behavior is
233 shown in Figure 8.
234 However, model results
235 when extended to the
236 future diverge strongly as
237 seen in Figure 9.
238
239
240
241
242
243
244

So, where does all this 
leave us?  First, for 
purposes of perspective, it 
is worth noting that the 
temperature changes we 
are discussing are small. 



Figure 8. Observed temperature behavior.  Pink envelope
indicates statistical uncertainty bounds.

Table 1. Cancellation by aerosols for various choices of
sensitivity.

245 In Figure 10, which shows the
246 temperature record for February
247 2013 in Boston, and also shows daily
248 high and low, the average high and
249 low, and the record breaking highs
250 and lows for each day, the the
251 thickness of the red line constitutes
252 the range of change of global mean
253 temperature anomaly for the past 150
254 years.  The same situation would
255 pertain to any year and month.  The
256 warming that is discussed with
257 respect to the issue of global
258 warming is not something that can
259 be perceived within the noise of
260 normal variability.  Second, if we
261 wish to account for the observed
262 warming over the past 150 years on
263 the basis of greenhouse gases,
264 volcanoes and aerosols, then the new
265 bounds on aerosols rule out
266 sensitivities over about 2C.  Third,
267 given that all IPCC models fail to
268 predict the cessation of discernible
269 warming over almost the past 20
270 years, we have to conclude that
271 natural variability is at least as large
272 as any anthropogenic contribution. 
273 But, the IPCC argument for
274 attributing the warming since the
275 1970's to anthropogenic forcings
276 depended on the assumption that
277 natural variability was small (based
278 on the model behavior).  This, we now see, is untrue, and hence the IPCC argument for the
279 attribution of recent warming to anthropogenic forcing breaks down. That is to say, we can no
280 longer claim that man’s contribution to warming has been identified in the data.  Fourth,
281 ironically, the presence of natural variability now provides for a remote possibility of higher
282 sensitivity, provided that natural variability provided part of the cancellation of the excess
283 warming associated with high sensitivity.  This has been suggested in a recent paper (Brown et
284 al, 2015)).  The idea is that the same natural variability that accounts for the cessation of
285 warming over the past 18 years, might also have cancelled warming that might otherwise have
286 occurred during the earlier period.  Not only does this destroy the original argument for
287 attribution, but it also involves special pleading of a particularly egregious sort since it is just as
288 likely that natural variability accounted for much of the warming episode itself, in which case the
289 sensitivity would have to be very low.



Figure 10. Boston temperatures for the period Feb 9 - March 11 2013. 
Blue bars show temperature range for day; dark gray bars show average
highs and lows for a given date; light gray bars show record highs and
lows for a given date.  The thickness of the red line represents the range
of global mean temperature since 1850.

Figure 9. Observed model projections compared with observed
temperature.

290 Still, when everything
291 is considered, it would
292 appear that
293 equilibrium sensitivity
294 in excess of about 2C
295 depends on the
296 arbitrary coincidence
297 of factors and is thus
298 highly unlikely.  Many
299 recent peer reviewed
300 papers indeed noted
301 the that climate
302 sensitivity is likely to
303 small (Lewis, 2013 ,
304 Lewis and Crok, 2014,
305 Lewis and Curry, 2014
306 Annan and
307 Hargreaves, 2011,
308 Ring et al, 2012,
309 Aldrin et al, 2012). 
310 Further support for
311 low sensitivity will be
312 presented in Section3. 
313 Indeed, the lower
314 value of sensitivity (ie,
315 1.5C), is currently
316 within the range of
317 IPCC projections.
318 Thus, the danger that
319 might be associated
320 with a highly sensitive
321 climate is implausible,
322 but not yet rigorously
323 impossible.   As usual,
324 it is difficult if not
325 impossible for science
326 to prove things to be
327 impossible.  Such a
328 situation is far
329 removed from either
330 settled science or any likelihood of apocalypse.  This is separate from the issue of whether any
331 proposed emissions policy would discernibly influence the situation.  However, if the situation is
332 that there is no impending danger, then even this would not matter.
333
334



Figure 11. Time history of temperature for two periods in the instrumental
record.  One warming episode refers to a period where the warming could
not be due to anthropogenic emissions; the other has been claimed by the
IPCC to be due to man.  Note that time and relative temperature scales are
identical in both graphs.

335 2. Climate change
336 v. anthropogenic
337 climate change.
338
339 Note that only the
340 warming from
341 about 1978 until
342 1998 is, according
343 to the IPCC,
344 potentially
345 attributable to
346 emissions.  The
347 reason for this is
348 seen in Figure 2. 
349 Until the 70's,
350 greenhouse forcing
351 was simply too
352 small.  However, as
353 can be seen in
354 Figure 8, there was
355 an earlier warming
356 from about 1918
357 until 1940.  In Figure 11, we display the temperature records for the periods 1895-1946, and
358 1957-2008, periods which surround the two warming episodes. As is evident, the two periods are
359 essentially indistinguishable though one is presumably natural while the other is claimed to be
360 due in large measure to man.  Put simply, there is nothing seemingly unusual or unprecedented
361 about the recent warming episode, and like the earlier episode, it appears to have ended (in the
362 case of the most recent episode, about 18 years ago).  Of course, it has long been recognized that
363 earth has had many warm periods (the Medieval Warm Period, the Holocene Optimum, several
364 interglacial periods, the Eocene (which was much warmer than the present), etc.  The point is
365 simply that climate always changes.  While there are occasional disputes about some of the
366 earlier warm episodes, there can be no dispute about the existence of a non-anthropogenic
367 warming episode in the thermometric record.  
368
369 Tellingly, climatologists in the past referred to the warm periods as ‘optima’ since they were
370 associated with thriving life forms.  It is conceivable, however, that man emerged only during the
371 period of glaciation cycles because only in such challenging climates was there an evolutionary
372 advantage for intelligent mammals.  Most plant forms, however, evolved during periods of high
373 CO2 (often ten times present levels).  These periods were mostly (though not always) warm
374 periods.  However, there is also evidence of cold periods associated with higher levels of CO2. 
375 The famous ice cores from Antarctica do show low values of CO2 associated with glacial periods
376 and higher values associated with interglacials.  However, it appears that changes in CO2
377 followed rather than led changes in temperature.  This should not be surprising.  Increased
378 temperatures are associated with decreasing ability of oceans to hold CO2, and also with greater
379 rates of biospheric decay on land.  This will be an important consideration in Section 4.



380 3. Sensitivity and feedbacks.
381
382 In Section 1, we considered the consequences of different choices of climate sensitivity.  In this
383 section we will discuss what physically determines sensitivity.  As already noted, greenhouse
384 warming results from the fact that the addition of greenhouse gases (ie gases with absorption and
385 emission in the infrared spectrum characteristic of the earth’s temperature), elevates the
386 characteristic level from which radiation is emitted to space. The emitted flux increases sharply
387 with temperature, but the temperature of the troposphere decreases with altitude.  Thus, the
388 amount of emitted radiation decreases with the addition of the greenhouse gas (or substance since
389 clouds are a major greenhouse substance).  This decrease represents the radiative forcing shown
390 in Figure 1. To compensate for this, the entire troposphere warms in order to bring the radiation
391 to space in balance with the net incoming solar radiation.  The usual value given for the radiative
392 forcing due to doubling CO2 is about 3.5 watts per square meter.  However, as we see in Figure
393 1, even this is subject to substantial uncertainty.  Moreover, the value depends on ignoring the
394 role of upper level cirrus clouds.  Note that, in the absence of upper level cirrus clouds, the
395 characteristic emission level is determined primarily by water vapor with relatively small
396 contributions from CO2.  Where upper level cirrus clouds are present, their infrared opacity is so
397 great that the tops of these clouds determine the emission level.   Of course, clouds (mostly at
398 lower levels in the troposphere) also reflect sunlight, and thus also play a major role in
399 determining the net incoming solar radiation (ie the incoming solar visible radiation minus that
400 part reflected by the surface, clouds, and aerosols).  
401
402 Now, all the above factors (upper level cirrus coverage, humidity, low level cloud cover, and
403 surface properties which depend on snow and ice cover) can depend on temperature.  Thus, when
404 added greenhouse gases alter temperature, these factors provide feedbacks that can either amplify
405 or diminish the direct effect of the greenhouse gases.  Without feedbacks, a doubling of CO2 is
406 generally claimed to lead to a warming of about 1C.  This is generally considered too small to
407 promote great concern.  The paper that probably did more to promote concern than any other was
408 Manabe and Weatherald (1975).  In this paper, a simple one dimensional model was used to
409 show that the assumption of constant relative humidity would lead to a positive feedback that
410 would approximately double the response to increasing CO2.  The point is that relative humidity
411 is the ratio of humidity (ie the amount of the main greenhouse gas, water vapor) to its saturated
412 value.  But, the saturated value increases with temperature.  Thus, if relative humidity were to
413 remain constant, humidity, itself, would increase.  This proved extremely important.  The
414 mathematical treatment of feedbacks is given in Lindzen et al (2001).  It leads to the following
415 equation:

416

417
418
419
420
421
422
423

The so-called water vapor feedback contributes 0.5 to the sum of feedback factors (viz Manabe 
and Weatherald, 1975, as well as IPCC, 2013), and this, by itself, doubles the response. 

However, for example, adding other feedback factors contributing an additional 0.5 to the sum, 
would bring the response to infinity, and still more positive feedback would destabilize the 
climate system.  The IPCC model based estimate of sensitivity between 1.5 and 4.5C implies 
that, in addition to the so-called water vapor feedback of 0.5, there are, in the models, other 
feedbacks



424 with feedback factors ranging from -.17 up to about +0.28, depending on the model.  The crucial
425 point is that the putative existence of starting feedback factor of 0.5 opens up the possibility of
426 very large sensitivities with relatively small additions to the sum of feedback factors.  These
427 additional feedbacks are associated in the models with clouds, and, to a much lesser extent,
428 changes in surface properties.  However, as the IPCC acknowledges, all the feedbacks depend on
429 unresolved features which have to be parameterized and are highly uncertain.  When various
430 scientific bodies refer to consensus, they are referring to the relatively trivial matters such as the
431 observation that CO2 is increasing, that there is a greenhouse effect, and that there has been a
432 small warming since the end of the Little Ice Age in the 19th Century.  On the whole, the last item
433 has been a beneficial change.  However, in a public message by the presidents of the National
434 Academy of Sciences and the Royal Society, the fact that the actual climate sensitivity is a matter
435 current research is openly acknowledged (Rees and Cicerone, 2010). Quoting from their letter,
436 “Straightforward physics tells us that this rise is warming the planet. Calculations
437 demonstrate that this effect is very likely responsible for the gradual warming observed over the
438 past 30 years and that global temperatures will continue to rise – superimposing a warming on all
439 the other effects that make climate fluctuate. Uncertainties in the future rate of this rise,
440 stemming largely from the “feedback” effects on water vapour and clouds, are topics of current
441 research.”  The peculiarly disappointing aspect of this research is that it has not changed the
442 range of model results since the Charney Report of 1979 (Charney et al, 1979).  Following the
443 brief Charney Report, the National Academy assembled a panel to prepare a major study
444 (Nierenberg et al, 1983).  The chair of this panel, William Nierenberg, Director of the Scripps
445 Oceanographic Institution, became an outspoken skeptic of global warming alarm.
446
447 It is important at this stage to explain why I referred to the water vapor feedback as the ‘so-called
448 water vapor feedback.’  The point is that the water vapor feedback is only relevant in regions free
449 of upper level cirrus, but, in the tropics where the feedback processes are concentrated, upper
450 level cirrus coverage is highly variable.  One cannot evaluate the water vapor feedback without
451 knowing the area over which it applies.  The upper level cirrus are produced by ice thrown off of
452 deep cumulus towers.  How much ice is thrown off depends on how efficiently rain forms within
453 the towers.  Inefficient rain production leaves more liquid to freeze and detrain forming cirrus. 
454 The exact nature of these processes is unclear, but studies show that warming leads to reduced
455 cirrus coverage (Rondonelli and Lindzen,2008, Horvath and Soden, 2008) which acts to
456 counteract the warming (ie acts as a negative feedback).  This is referred to as the Iris Effect
457 (Lindzen et al, 2001).  Since the feedbacks due to water vapor and upper level cirrus cannot be
458 disentangled, the only remaining approach is to consider the two together as a long wave (or
459 infrared) feedback.   This combined long wave feedback can be measured from space, and
460 several studies show it to be negative or small rather than positive and large (Lindzen and Choi,
461 2011, Choi, et al, 2014, Trenberth and Fasullo, 2009 ).  Without the water vapor feedback in the
462 above equation, there is little scope for high sensitivity.  Thus, if the water vapor is simply zero
463 (rather than negative as the data suggests), the remaining model feedbacks lead to a range of
464 sensitivity of from about 0.85C to 1.4C.  Should the long wave feedback be negative as various
465 studies suggest (Lindzen and Choi, 2011, Choi, et al, 2014, Cho et al,2012) then sensitivity
466 would be even less.  There are currently attempts to find new short wave feedbacks that might
467 increase sensitivity (Trenberth and Fasullo, 2009,  Bony and Dufresne, 2005), but this would
468 completely change the long-standing basis for concern.  No longer would the water vapor



Figure 12. Fossil fuel emission rates v.
time.

Figure 13.  Atmospheric CO2 as a function of
time at Mauna Loa Observatory.

469 feedback be credited with increasing sensitivity, but rather entirely new and hitherto unknown
470 feedbacks would have to be invoked.  It seems unlikely that such feedbacks would return
471 sensitivities in excess of 2C.  The Iris Effect has been a source of considerable controversy. 
472 Interestingly, a recent paper (Mauritsen and Stevens, 2015) notes that the inclusion of the iris
473 effect in their model uniquely corrects a variety of serious model deficiencies (inadequate change
474 in evaporation with changes in temperature, errors in outgoing radiation associated with
475 temperature changes – both major factors in determining climate sensitivity).  
476
477 Summarizing the situation so far, we find the following:
478 a. The basis for attributing warming in the period 1978-1998 (the only period the IPCC claims
479 can be attributed to anthropogenic emissions) is no longer valid since natural variability is
480 unambiguously present in nature if not in models.
481 b. The physical basis for high climate sensitivity, the water vapor feedback, appears to be
482 cancelled and even turned negative by other processes (presumably the variation of upper level
483 cirrus).
484 c. While the possibility of high climate sensitivity cannot be rigorously disproved, it would
485 depend on processes that have not yet been identified.  Feedbacks (other than the water vapor
486 feedback) in current models would be grossly insufficient.
487
488 4. The relative roles of temperature v. emissions in determining increases in atmospheric
489 CO2.
490
491 Policies stemming from concerns over CO2 assume that we know how to control atmospheric
492 levels of CO2.   There are substantive reasons to question even this.  Figure 12 shows the
493 estimated emissions published by the Carbon Dioxide Information Analysis Center (CDIAC) at 
494 Oak Ridge National Laboratory.  Figure 13 shows the atmospheric levels of CO2.  Despite a
495 rapid acceleration of emissions in 2002 (the rate essentially tripled), the rate of increase in CO2
496 remained essentially unchanged.  Systematic instrumental observation of CO2 dates back to only
497 1958.  Data for earlier times are obtained from the analysis of air bubbles in ice cores.  Dating of
498 such air bubbles is imprecise and involves a spread of about 18-20 years (MacFarling et al,
499 2006).  Subject to this caveat, the data in Figure 14 (which comes from a smoothed and adjusted
500
501
502
503
504
505
506
507
508
509
510
511
512
513



Figure 14. Global mean CO2 obtained from ice cores.

514 version of this data from
515 NASA’s Goddard Institute for
516 Space Studies) shows a
517 noticeable decline in CO2
518 during the period following
519 1940.  This was a period of
520 modest cooling, and the decline
521 suggests that temperature may
522 be influencing levels of
523 atmospheric CO2.  The usual
524 rule of thumb that half of
525 emitted CO2 appears as
526 atmospheric CO2 is based on
527 the Bern model for CO2
528 geochemistry.  This model
529 appears to assume that
530 temperature does not contribute to
531 secular changes in atmospheric
532 CO2.  If this assumption is
533 inappropriate (and it certainly seems so), then the contribution of emissions to atmospheric CO2
534 may be significantly less.  The only point here is that even the connection of emissions to
535 atmospheric CO2 is open to question.  
536
537 That said, it remains the case that the contribution of US emissions is already less than those of
538 the rapidly developing countries, and that any reductions that the US makes (and much less that
539 Minnesota makes) will have an undetectable influence of global mean temperature regardless of
540 what climate sensitivity is and what geochemical model one uses.
541
542 5. Climate and extreme weather, sea ice, etc.
543
544 As noted in Section 1, warming per se is not catastrophic.  Rather, concerns arise from the
545 potential impact of such warming on drought, flooding, storminess, sea ice, etc.  Despite
546 assertions by the President’s Science Adviser, Dr. John Holdren, there is no evidence that these
547 matters are increasing due to warming (or in most cases increasing at all).  On these issues there
548 is often profound disagreement between the IPCC and the political assertions.  The absence of
549 evidence for increases in various hydro-meteorological disasters is amply discussed in Pielke, Jr.
550 (2014).  Even where trends exist, such as summer arctic ice cover, the reduction has reversed in
551 the last few years; also, antarctic sea ice has been increasing throughout the satellite era. 
552 Although satellite data has only been available since the late 70's, anecdotal evidence for summer
553 sea ice reductions in the early 1920's is amply available.  Sea level rise has been occurring since
554 the end of the last glaciation.  Changes in instrumentation make it impossible to say whether the
555 rate is actually increasing (Wunsch, Ponte and Heimbach, 2007).  With respect to extratropical
556 storminess, both basic theory and models imply that global warming will reduce storminess and
557 extremes (viz any textbook on dynamic meteorology: eg Holton and Hakim, 2013, Lindzen,
558 1990).  The issue here is that the primary driving force for storm development is the temperature



Figure 15. Relative risk of mortality (y-axis) as a function of mean daily
temperature plotted as a percentile of the entire temperature record. 
Temperature for each country was pooled.

559 difference between the tropics and the poles.  Since global warming is supposed to be greater at
560 the poles, this difference should be decreasing.  Extremes in temperature such as those shown in
561 Figure 10 result from the advection of air from distant points.  Reduced storm intensity also
562 reduces the strength of such advection.  It is sometimes suggested that warming could contribute
563 to tropical storms because of increases in evaporation and humidity.  However, observations
564 show that we have had 10 years of unusually low hurricane activity (Pielke, Jr., 2014) .  As the
565 IPCC delicately notes, “There is medium evidence and high agreement that long-term trends in
566 normalized losses have not been attributed to natural or anthropogenic climate change.” (IPCC,
567 SREX, 2012)
568
569 6. Benefits v. costs.
570
571 In view of the above, it is not evident why one attaches costs to the emissions of CO2.  To be
572 sure, the burning of fossil fuels can lead to emissions of actual pollutants, but CO2 is not, itself a
573 pollutant, and effective means of eliminating the actual pollutants are generally required and
574 implemented.  Over the past 200 years, there has been modest warming of about 0.8C, and there
575 has been a general improvement in the human condition.  Such costs as are inferred are generally
576 based on model projections and speculations concerning impacts rather than observed relations. 
577 Moreover, the benefits of both warming and increased CO2 are clearer.  CO2 is the basic
578 chemical for photosynthesis.  It is essential to plant life, and at least on the order of 150 ppmv are
579 needed to sustain life.  CO2 is a fertilizer, and the increasing levels over the past two centuries
580 are significant contributors to increased agricultural productivity (Idso, 2000, Driessen and
581 Arnold, 2014). 
582 Warming itself, at the
583 levels that might
584 realistically be
585 anticipated (ie under
586 2C for the
587 foreseeable future)
588 are estimated to be
589 net benefits. In
590 considering excess
591 deaths attributable to
592 extreme warm
593 events, one should
594 also consider the far
595 larger number of
596 excess deaths due to
597 extreme cold events
598 (Goklany, 2012, Guo
599 et al, 2014).  Guo et
600 al (2014) note, quite
601 remarkably, that
602 excess deaths are
603 associated primarily



604 with colder temperatures even in warm climates.  Figure 15 is taken from Guo et al (2014). 
605 Moreover, as noted in Section 5, warming should actually reduce the incidence of extremes. 
606 Warming apart, CO2 is not a pollutant.  As Casey and Macatangay (2010), note, NASA studies
607 show that concentrations under 5000 ppmv (12.5 times present ambient levels, and much higher
608 than the burning of all fossil fuels would produce) present no risk to health.
609
610 In summary, we have well identified benefits – including those from modest warming – and
611 implausible dangers involving uncertain costs.  There is, moreover, the evident negative impact
612 of proposed measures on prosperity, and the obvious importance of prosperity for environmental
613 resilience.  The policy risks of limiting the clean burning of fossil fuels are clear and are likely to
614 exceed such risks of climate change as may exist.
615
616
617 References
618
619 Aldrin, M., et al., 2012. Bayesian estimation of climate sensitivity based on a simple
620 climate model fitted to observations of hemispheric temperature and global ocean heat
621 content. Environmetrics, doi: 10.1002/env.2140.
622
623 Annan, J.D., and J.C Hargreaves, 2011. On the generation and interpretation of
624 probabilistic estimates of climate sensitivity. Climatic Change, 104, 324436.
625
626 Bony, Sandrine and J.-L. Dufresne, 2005, Marine boundary layer clouds at the heart of tropical
627 cloud feedback uncertainties in climate models. Geophysical Research Letters, DOI:
628 10.1029/2005GL023851
629
630 Brown, P.T., W. Li, E.C. Cordero and S.A. Mauget, 2015,  Comparing the model-simulated
631 global warming signal to observations using empirical estimates of unforced noise. Nature,
632 5:9957/DOI: 10.1038/srep09957
633
634 Casey, J.T. and A. Macatangay, 2010, Carbon Dioxide – Our Common Enemy, NASA Report. 
635 available at http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20090029352.pdf
636
637 Charney, Jule G. , Akio Arakawa, D. James Baker, Bert Bolin, Robert E. Dickinson, Richard
638 M. Goody, Cecil E. Leith, Henry M. Stommel, and Carl I. Wunsch, 1979, Carbon Dioxide and
639 Climate: A Scientific Assessment, National Research Council, Ad Hoc Study Group on Carbon
640 Dioxide and Climate (Washington, DC: National Academy Press).
641
642 Cho H, Ho CH, Choi YS (2012) The observed variation in cloud-induced longwave radiation in
643 response to sea surface temperature over the Pacific warm pool fromMTSAT-1R imagery.
644 Geophys Res Lett 39: L18802
645
646 Choi, Y.-S. , Cho, H., Ho, C.-H., Lindzen, R.S., Park, S.K. & Yu, X. (2014) Influence of non-
647 feedback variations of radiation on the determination of climate feedback.  Theor Appl Climatol
648 DOI 10.1007/s00704-013-0998-6



649 Driessen, P. and R. Arnold, 2014, Miracle Molecule: Carbon Dioxide, Gas of Life, Availble as
650 Kindle book from Amazon.com, 40 pp.
651
652 Goklany, I., 2012, Humanity Unbound How Fossil Fuels Saved Humanity from Nature and
653 Nature from Humanity, Cato Policy Analysis No. 715, 33 pp. 
654
655 Guo, Y., Gasparrini, A., Armstrong, B., Li, S., Tawatsupa, B., Tobias, A., & Williams, G.

656 (2014). Global Variation in the Effects of Ambient Temperature on Mortality: A Systematic

657 Evaluation. Epidemiology, 25(6), 781-789

658 Holton, J.R. and G.J. Hakim, 2013, An Introduction to Dynamic Meteorology, 5th Edition,

659 Academic Press, 532 pp.

660 Horvath, A. and B.J. Soden, 2008, Lagrangian Diagnostics of Tropical Deep Convection and Its

661 Effect upon Upper-Tropospheric Humidity, Journal of Climate, DOI: 10.1175/2007JCLI1786.1

662 Idso, C. et al, 2000, Ultra-enhanced spring branch growth in CO2-enriched trees: can it alter the

663 phase of the atmosphere's seasonal CO2 cycle? Environmental and Experimental Botany,

664 Volume 43, Issue 2, April 2000, Pages 91-100

665 IPCC, 2013, Climate Change 2013: The Physical Science Basis. Cambridge University Press. 

666 Available at http://www.ipcc.ch/report/ar5/wg1/

667 IPCC, 2012, Managing the risks of extreme events and disasters to advance climate change

668 adaptation. Cambridge University Press.  Available at http://www.ipcc-wg2.gov/SREX/

669 Lewis, N. 2013. An objective Bayesian, improved approach for applying optimal fingerprint

670 techniques to estimate climate sensitivity. Journal of Climate, doi:10.1175/JCLID1200473.1.

671 Lewis, N. and M. Crok, 2014, A Sensitive Matter: How The IPCC Buried Evidence Showing

672 Good News About Global Warming, Global Warming Policy Foundation Report No. 13, 65 pp.

http://www.thegwpf.org/content/uploads/2014/02/A-Sensitive-Matter-Foreword-inc.pdf673

674 Lewis, N. and J.A. Curry, C., 2014. The implications for climate sensitivity of AR5 focring and

675 heat uptake estimates. Climate Dynamics, 10.1007/s003820142342y.

676 Lindzen, R.S.  and C. Giannitsis (1998) On the climatic implications of volcanic cooling.  J.

677 Geophys. Res., 103, 5929-5941.

678 Lindzen 1990, Dynamics in Atmospheric Physics, Cambridge University Press, New York,

679 310pp.

680 Lindzen, R.S., and YS. Choi, 2011. On the observational determination of climate sensitivity and

681 its implica tions. Asia-Pacific Journal of Atmospheric Science, 47, 377-390.



682 Lindzen, R.S., M.-D. Chou, and A.Y. Hou (2001) Does the Earth have an adaptive infrared iris? 

683 Bull. Amer. Met. Soc. 82, 417-432.

684 MacFarling et al, 2006, Law Dome CO2, CH4 and N2O ice core records extended to 2000 years

685 BP. Geophysical Reaearch Letters, 33, L14810, doi:10.1029/2006GL026152

686 Manabe, S. and R.T. Wetherald, 1975, The effects of doubling the C02 concentration on the

687 climate of a general circulation model. J. Atmos. Sci., 32, 3-15.

688 Mauritsen, T. and B. Stevens, 2015,  Missing iris effect as a possible cause of muted hydrological

689 change and high climate sensitivity in models, Nature Geoscience, DOI: 10:1038/NGEO2414. 

690 Nierenberg, W. et al., 1983, Changing Climate: Report of the Carbon Dioxide Assessment

691 Committee, Board on Atmospheric Sciences and Climate, Commission on Physical Sciences,

692 Mathematics, and Resources, National Research Council (Washington, DC: National Academy

693 Press),

694 Pielke, R. Jr., 2014, The Rightful Place of Science:Disasters and Climate Change, Consortion for

695 Science, Policy and Outcomes at Arizona State University, 114 pp.

696 Pierrehumbert, R.T., 2010, Principles of Planetary Climate, Cambridge Univ. Press, 652 pp.

697 Rees, Martin and Ralph Cicerone, 2010, What’s happening to the climate is unprecedented,

698 Financial Times, April 9, 2010.

699 Ring, M.J., et al., 2012. Causes of the global warming observed since the 19th century.

700 Atmospheric and Climate Sciences, 2, 401415, doi: 10.4236/acs.2012.24035.

701 Rondanelli, R.F. and R.S. Lindzen (2008) Observed variations in convective precipitation

702 fraction and stratiform area with SST.   J. Geophys. Res.113, D16119,

703 doi:10.1029/2008JD010064.

704 Stevens, B.J., 2015, Rethinking the lower bound on aerosol radiative forcing, Journal of Climate,

705 doi: 10.1175/JCLI-D-14-00656.1

706 Trenberth, K.E. and J.T. Fasullo, 2009, Global warming due to increasing absorbed solar

707 radiation, Geophysical Research Letters, Vol. 36, L07706, doi:10.1029/2009GL037527

708 Wunsch, C., R.M. Ponte, and P. Heimbach, 2007,  Decadal Trends in Sea Level Patterns:

709 1993-2004, Journal of Climate, DOI: 10.1175/2007JCLI1840.1

710

711



William Happer Direct 
OAH 80-2500-31888 

MPUC E-999/CI-14-643 

i 

6986686

BEFORE THE OFFICE OF ADMINISTRATIVE HEARINGS 

FOR THE MINNESOTA PUBLIC UTILITIES COMMISSION 

STATE OF MINNESOTA 

In the Matter of the Further Investigation in to  

Environmental and Socioeconomic Costs 

Under Minnesota Statute 216B.2422, Subdivision 3 

OAH Docket No. 80-2500-31888 

MPUC Docket No. E-999-CI-14-643 

Direct Testimony and Exhibits of 

Professor William Happer 

June 1, 2015 



William Happer Direct 
OAH 80-2500-31888 

MPUC E-999/CI-14-643 
 

ii 
 
6986686 

PROFESSOR WILLIAM HAPPER 
 

OAH 80-2500-31888 
 

MPUC E-999/CI-14-643 
 

TABLE OF CONTENTS 
 
I. INTRODUCTION .......................................................................................... 1 

II. OVERVIEW OF OPINIONS ......................................................................... 3 

III. CO2 AND WARMING ................................................................................... 4 

IV. SENSITIVITY VALUES ............................................................................... 6 

V. WARMING HIATUS ..................................................................................... 8 

VI. EXTREME WEATHER ................................................................................. 9 

VII. BENEFITS OF CO2 ........................................................................................ 9 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



William Happer Direct 
OAH 80-2500-31888 

MPUC E-999/CI-14-643 

1 

I. INTRODUCTION 1 

Q. Please state your name, address, and occupation.   2 

A. My name is William Happer, my address is 559 Riverside Drive, Princeton, 3 

NJ 08540. I am a physicist by occupation. 4 

Q. Please describe your educational background and professional 5 

experience. 6 

A. I received a BS degree in physics from the University of North Carolina at 7 

Chapel Hill in 1960, and I received a PhD degree in physics from Princeton 8 

University in 1964. I began my academic career in 1964 at Columbia 9 

University as a member of the research and teaching staff of the Physics 10 

Department. While serving as a Professor of Physics I also served as Co-11 

Director of the Columbia Radiation Laboratory from 1971 to 1976, and 12 

Director from 1976 to 1979.  In l980 I joined the faculty at Princeton 13 

University.  On August 5, 1991 I was appointed Director of Energy 14 

Research in the Department of Energy (DOE) by President George Bush. 15 

While serving in that capacity under Secretary of Energy James Watkins, I 16 

oversaw a basic research budget of some $3 billion, which included much of 17 

the federal funding for high energy and nuclear physics, materials science, 18 

magnetic confinement fusion, environmental and climate science, the human 19 

genome project, and other areas.  I remained at the DOE until May 31, 1993 20 

to help the Clinton Administration during the transition period.  I was 21 

reappointed Professor of Physics at Princeton University on June 1, 1993, 22 

and named Eugene Higgens Professor of Physics and Chair of the University 23 

Research Board, Princeton University’s equivalent of Vice President for 24 

Research, from 1995 to 2005. From 2003 until my retirement from teaching 25 

in 2014, I held the Cyrus Fogg Brackett Chair of Physics.  After retirement, I 26 
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retained my office in Princeton University, where I have the status of 

Professor, Emeritus. 

From 1987 to 1990 I served as Chairman of the Steering Committee of 

JASON, a group of scientists and engineers who advise agencies of the 

Federal Government on matters of defense, intelligence, energy policy and 

other technical problems. I served as a trustee of the MITRE Corporation 

from 1993 to 2011, I am the Chair of the Board of the Richard Lounsbery 

Foundation, and of the Marshall Institute.  From 2002 to 2006 I chaired the 

National Research Council's Standing Committee on Improvised Explosive 

Devices that supported the Joint Improvised Explosive Devices Defeat 

Organization of the Department of Defense.  I was a co-founder in 1994 of 

Magnetic Imaging Technologies Incorporated (MITI), a small company 

specializing in the use of laser polarized noble gases for magnetic resonance 

imaging. I invented the sodium guidestar that is used in astronomical 

adaptive optics to correct for the degrading effects of atmospheric 

turbulence. 

I have published over 200 peer-reviewed scientific papers. I am a Fellow of 

the American Physical Society, the American Association for the 

Advancement of Science, and a member of the American Academy of Arts 

and Sciences, the National Academy of Sciences and the American 

Philosophical Society.  I was awarded an Alfred P. Sloan Fellowship in 

1966, an Alexander von Humboldt Award in 1976, the 1997 Broida Prize 

and the 1999 Davisson-Germer Prize of the American Physical Society, and 

the Thomas Alva Edison Patent Award in 2000, and the Fred Seitz Award of 

SEPP in 2015.  My CV is attached as Happer Exhibit 1. 25 
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II. OVERVIEW OF OPINIONS 1 

Q. What are the purposes of your testimony in this proceeding?  2 

A. My purpose is to explain that atmospheric CO2  gas is not a pollutant but a 3 

benefit to the earth. 4 

Q. Could you summarize your principal conclusions and 5 

recommendations? 6 

A. The gases CO2 and water vapor, H2O, are both emitted by combustion of 7 

fossil fuels. Both are greenhouse gases that cause some warming of the 8 

earth’s surface. Observations over the past two decades show that computer 9 

models have exaggerated the warming caused by additional CO2 by several 10 

hundred percent.  At the current utilization rate of fossil fuels, many 11 

centuries will be needed to cause a temperature increase of 2 C. This modest 12 

warming will be beneficial to humanity and other life on earth.  13 

Furthermore, green plants currently have too little CO2, compared to 14 

geological norms. The CO2 released by combustion of fossil fuels for the 15 

next few centuries will partially restore the much larger levels of CO2 that 16 

have existed over most of the history of life on earth.  Plant growth rates and 17 

drought resistance will benefit significantly from the additional CO2.  18 

Continued releases of CO2 will continue to benefit the planet for many 19 

centuries. CO2 has no social cost. 20 

Q. Have you prepared a report that contains your opinions? 21 

A. Yes, I have prepared a report with references to the scientific literature that 22 

has led me to my conclusions and recommendations.  My report is attached 23 

as Happer Exhibit 2. 24 

Q. Are you familiar with the history of the climate change models and 25 

predictions used by the IPCC?  26 
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A. Yes, I am very familiar with the climate models used by the IPCC, and I 1 

funded some of the early models when I was Director of Energy Research at 2 

the United States Department of Energy from 1990 to 1993. Today, 3 

observational data provides good reason to doubt the large warmings 4 

predicted by IPCC computer models. 5 

Q. Are you familiar with the models underlying the social cost of carbon? 6 

A. Yes, I am familiar with the models.  The economic models make little sense 7 

today since they are based on climate models that clearly overestimate the 8 

warming from more CO2 by hundreds of per cents.  The economic models 9 

also greatly underestimate the very beneficial effects of more CO2 on 10 

agriculture. 11 

III. CO2 AND WARMING 12 

Q. Can you explain what is meant by the “greenhouse effect” as it relates 13 

to the Earth’s warming? 14 

A. The greenhouse effect as it relates to Earth’s warming is an increase in the 15 

average  surface temperature of Earth and a moderation of nighttime cooling 16 

compared to a hypothetical situation of an atmosphere containing no CO2, 17 

H2O or clouds.  18 

Q. Can you describe the category of “greenhouse gases”? 19 

A. Greenhouse gases are transparent for visible light but opaque for infrared 20 

(thermal) light. Greenhouse gases are molecules with two or more atoms, 21 

like H2O, the most important greenhouse gas of the Earth, and CO2, the 22 

second most important. The most abundant atmospheric gases, N2, O2 and 23 

Ar are transparent to both visible and infrared radiation and are not 24 

greenhouse gases. 25 

Q. In your opinion, is CO2 a conventional “pollutant”? 26 
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A. CO2 is not a conventional pollutant nor is it a pollutant at all. Webster’s New 1 

Collegiate Dictionary defines the verb “pollute” as “to make or render 2 

unclean, to defile.” But CO2, like H2O, is part of the web of life, transparent, 3 

odorless and non-toxic. Exhaled human breath typically contains about 4 

45,000 parts per million (ppm) of CO2, compared to the 400 ppm that is 5 

inhaled. An adult human being exhales about 1 kilogram of CO2 per day. 6 

Examples of real gaseous pollutants are ozone or oxides of nitrogen or 7 

sulfur. Examples of real particulate pollutants are smog or fly ash.  8 

Q. Will increases in atmospheric CO2 concentration result in increasing 9 

global surface temperature? 10 

A. Yes, increasing CO2 will increase the surface temperature. The most 11 

important unresolved question is how much the increase will be. A small 12 

increase will be a net benefit to the Earth. 13 

Q. Can you explain what it means for there to be a logarithmic relationship 14 

between temperature increase and CO2 concentration? 15 

A. Around the year 1900, the great Swedish chemist Arrhenius guessed that 16 

each doubling of CO2 concentration would cause the same temperature 17 

increase.  For brevity, we say that the temperature increase T is 18 

proportional to the logarithm, log(C) of the CO2 concentration C. This 19 

comes from the mathematical fact that for n doublings, log(Cn) = n log(C).  20 

Many people mistakenly think that the temperature increase is simply 21 

proportional to the concentration of the CO2.  This is only true for extremely 22 

small CO2 concentrations, C< 1 ppm. 23 

Many studies since Arrhenius’s time have confirmed the validity of the 24 

logarithmic relationship for CO2 concentrations above about 1 ppm.  The 25 
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logarithmic response is a peculiarity of the CO2 molecule and does not 1 

necessarily describe the warming by other greenhouse molecules.  2 

For example, if doubling the CO2 concentration from the current value of 3 

400 ppm to 800 ppm would increase the temperature by T=1 K, (1 degree 4 

Kelvin = 1.8 degree Fahrenheit), adding another 400 ppm of CO2 would 5 

increase the concentration from 800 ppm to 1200 ppm, or by a factor of 3/2.  6 

The resulting additional temperature increase would be log(3/2)/log(2) = 0.6 7 

K, quite a bit less than adding the first 400 ppm of CO2. So the logarithmic 8 

response of temperature increments to CO2 increments implies law of 9 

“diminishing returns” from more CO2 – the more you increase CO2, the less 10 

sensitive the climate will be to additional increases.  At current atmospheric 11 

levels of 400 ppm, the Earth’s atmosphere is already at a point of 12 

diminishing returns for the effects of additional emissions of CO2. 13 

IV. SENSITIVITY VALUES 14 

Q. What is climate sensitivity? 15 

A. Climate sensitivity S is the warming in degrees Kelvin (K) that would be 16 

caused by a doubling of the CO2 concentration.  The sensitivity S is defined 17 

by the simple equation, T= S log(C2/C1)/log(2), where T is the warming 18 

caused if the atmospheric concentration of CO2 increases from the initial 19 

value C1 to a final value C2. 20 

Q. How are climate sensitivity values determined? 21 

A. Ideally, climate sensitivity should be determined by experimental 22 

observations of how changes of the Earth’s temperature are related to 23 

changes in the concentrations of CO2 in the atmosphere.  In practice this is 24 

very difficult since many other factors besides atmospheric CO2 affect the 25 

Earth’s temperature. These factors, few of which are understood very 26 
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quantitatively, include solar influences, clouds, aerosols, volcanos, massive 1 

ocean instabilities like El Ninos, etc.   2 

One can also try to determine the sensitivity purely theoretically, with the 3 

aid of computer models that include as much of the climate physics as 4 

possible.  The physics, including clouds and complicated fluid flow in the 5 

atmosphere and oceans, is so complicated that few scientists have much 6 

confidence in purely theoretical calculations. 7 

Q. What is the track record of climate models used by the IPCC that have 8 

tried to predict climate sensitivity? 9 

A. Nearly all of the IPCC climate models have predicted several hundred 10 

percent more warming over the past twenty years than has actually been 11 

observed.  There is something seriously wrong with the models. 12 

Q. What are “feedbacks”?  13 

A. Feedbacks are changes in the atmosphere that amplify (positive feedback) or 14 

attenuate (negative feedback) the direct surface warming from changes of 15 

CO2.  For example, if more CO2 induces more high-altitude water vapor or 16 

cloudiness, it would amplify the warming and there would be a positive 17 

feedback.  If more CO2 were to induce more low-altitude clouds, they would 18 

reflect more sunlight and keep the surface from heating as much as before. 19 

This would be a negative feedback.  20 

Q. What is the impact of feedbacks on climate sensitivity? 21 

A. With no feedbacks, doubling CO2 concentrations will increase the average 22 

surface temperature by about S = 1 K. The IPCC has used large positive 23 

feedbacks to claim “most likely” doubling sensitivities of S = 3 K or larger.  24 

Models with such large doubling sensitivities have predicted several hundred 25 

per cent more warming than has actually been observed over the past 10 to 26 
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20 years. Observations are consistent with little, and perhaps even negative 1 

feedback, corresponding to doubling sensitivities of S = 1 K or less.  2 

Q. What do IPCC climate models assume as to climate sensitivity values? 3 

A. The IPCC states, ``equilibrium climate sensitivity is likely in the range 1.5 K 4 

to 4.5 K (high confidence).” 5 

Q. In your opinion, are these assumed values accurate and reliable?  6 

A. Even the lower limit, 1.5 K, is hard to reconcile with the almost complete 7 

lack of warming since the year 1998. 8 

A. In your opinion, what is the proper range for climate sensitivity values 9 

based on the latest scientific literature?  10 

A. My opinion is that the sensitivity is somewhere between S = 0.5 K and  S= 11 

1.5 K, with a most likely value close to the feedback-free sensitivity, which 12 

is approximately S = 1 K. 13 

V. WARMING HIATUS 14 

Q. To what extent have global surface temperatures increased during the 15 

past two decades? 16 

A. Global warming basically stopped about the time of the last large El Nino 17 

event in 1998.  There has been no significant warming since. 18 

Q. What do ground-based observations show? 19 

A. Ground-based observations show virtually no warming since 1998.  And 20 

ground-based warmings are known to have serious systematic errors 21 

associated with the loss of observing stations and urban heat island effects, 22 

both of which bias the results to more warming than actually exists. 23 

Q. Are the climate model projections compatible with the observed 24 

temperatures? 25 
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A. No, climate models do not agree with observed temperatures. Climate 1 

models predicted far more warming than has actually been observed. 2 

Q. Do you have an opinion as to why the IPCC model projections differ 3 

from observed temperature? 4 

A. In my opinion the IPCC climate models have adjusted many poorly 5 

constrained parameters to give the maximum possible warming. There is 6 

unlikely to be a single cause for their poor performance. But the assumption 7 

of large positive feedback is likely to have made the largest contribution to 8 

the overestimates. The IPCC has probably also greatly underestimated the 9 

role of factors other than CO2 in controlling the Earth’s surface temperature. 10 

A. What are the implications of the hiatus in warming for the reliability 11 

and accuracy of the IPCC models? 12 

A. None of the IPCC models accounted for the hiatus.  They should not be used 13 

as the basis for economic models or policy decisions. 14 

VI. EXTREME WEATHER 15 

Q. What is your opinion as to claims of increased extreme weather events 16 

in recent years due to global warming? 17 

A. There is not the slightest evidence for any increase in extreme weather 18 

events, as summarized by the Senate Testimony of 1 August, 2012 by John 19 

Christy, which I reference in my prepared report. 20 

VII. BENEFITS OF CO2 21 

Q. Do you have an opinion about increased levels of CO2 in the 22 

atmosphere? 23 
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A. More CO2 in the atmosphere will be a major overall benefit to the Earth 1 

because it will cause only small, beneficial warming, and it will greatly 2 

increase agricultural productivity. 3 

Q. What are the benefits of additional CO2? 4 

A. The main benefits are mild warming, more at night than during the day, and 5 

more near the Earth’s poles than near the equator.  This will extend 6 

agricultural growing seasons, especially in high latitudes near the Canadian 7 

border, Scandinavia, and northern Russia. In addition more CO2 will 8 

increase agricultural productivity, for three main reasons: 9 

i. All green plants use the enzyme rubisco, the most abundant protein on 10 

earth. Rubisco was designed several billion years ago when CO2 11 

levels were higher and O2 (oxygen) levels were lower.   At current low 12 

CO2 concentrations and high O2 concentrations, rubisco, activated by 13 

ATP produced with aid of sunlight in the chloroplasts, often acts on 14 

O2 to make hydrogen peroxide and other harmful compounds 15 

(photorespiration) instead of acting on CO2 to make useful 16 

carbohydrates. For this reason C4 plants (which have evolved 17 

mechanisms to cope with current low CO2 levels and high O2 levels) 18 

have displaced many C3 plants in warmer parts of the earth.  A more 19 

detailed discussion of C3 and C4 plants can be found in my prepared 20 

report, but representative C3 plants are all trees, wheat, rice, soybeans 21 

and cotton. Representative C4 plants include corn and sugar cane.  22 

More CO2 increases the productivity of both C3 and C4 plants, but 23 

especially C3 plants, which have a more efficient photosynthetic 24 

pathway if CO2 levels are high enough and O2 levels low enough. 25 
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ii. Especially in warmer parts of the earth and in the oceans, plants can 1 

use up the available CO2 and waste sunlight.  In American corn fields, 2 

the CO2 levels can decrease by a factor of two or three at midday, 3 

leading to a decrease in photosynthetic rates. 4 

iii. Current low CO2 levels have forced plants to grow more stomata in 5 

their leaf surfaces. This leads to excess water loss, since up to 100 6 

water molecules can diffuse out of the stomata for every single CO2 7 

molecule that diffuses in. This is why land plants need some 100 8 

grams of water to make one gram of carbohydrate.  If CO2 levels 9 

increase, plants grow leaves with fewer stomata and they do not waste 10 

so much water. 11 

Q. What do you mean when you say the earth has been in a “CO2 famine”? 12 

A. Over most of the past 550 million years, when land plants evolved, CO2 13 

levels have been much higher than today.  As discussed in the answer to the 14 

previous question, the low CO2 levels and high O2 levels significantly 15 

decrease the photosynthetic efficiency of plants, especially in full sunlight, 16 

and they force plants to use more water than would be needed for higher 17 

CO2 levels.  The modest CO2 increases over the satellite era, from about 340 18 

ppm to 400 ppm have already caused a noticeable greening, as I discuss in 19 

more detail in my prepared report. 20 

Q. Do models that estimate a social cost of carbon consider the benefits of 21 

CO2? 22 

A. Most economic models largely discount the major agricultural benefits of 23 

more CO2. This is partly because most models credulously accept the hugely 24 

inflated warming predictions of the IPCC models.  Economic models need to 25 

be reassessed with the realistic small warming that observations imply will 26 
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come from more CO2, and with including the very major agricultural 1 

benefits that will come from small warming, more efficient photosynthesis 2 

and less need for water. 3 

Q. If the models properly considered these benefits, what would be the 4 

impact on the social cost of carbon? 5 

A. If the benefits of more atmospheric CO2 were properly accounted for, they 6 

would far outweigh the losses and the social cost of more CO2 would be 7 

negative. 8 
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1 About the Author

In the summer of 2014 I retired from teaching at Princeton University, where I have been
on the faculty since 1980, except for a three-year absence from 1990 to 1993 to serve as the
Director of Energy Research at the United States Department of Energy in Washington, DC.
My DOE office supervised a research budget of some $3.5 billion, including environmental
and climate science, along with physics, chemistry, biology, and many other scientific areas.
I have won a number of awards and I am an elected member of various scientific societies,
including the National Academy of Sciences, the American Philosophical Society, the Amer-
ican Academy of Arts and Sciences. I am a fellow of the American Physical Society. I have
done research in nuclear physics, atomic, molecular and optical physics, atmospheric physics
and other areas. I am probably best known for my invention of the “sodium guide star”
concept, used in all modern ground-based telescopes to compensate for deleterious effects of
atmospheric turbulence on astronomical observations.

This is a brief essay about the “social cost of carbon,” that is, the cost of the alleged 
harm from emissions of the life-giving molecule carbon dioxide or CO2. There is no doubt 
that the concentrations of CO2 are increasing, as shown by Fig. 1. Much of the increase 
is from combustion of fossil fuels. Those who purport to show a large cost from emissions 
of CO2 assume that it will cause catastrophic global warming, flooding from rising oceans, 
the spread of tropical diseases to temperate latitudes, ocean acidification, and other horrors. 
But in fact, the alleged harmful effects of CO2 have been enormously exaggerated. The 
major benefits of more CO2 to green plants, and of modest warming to the planet, have been 
largely ignored. The benefits from more CO2 far outweigh any harm.

Nearly everyone today is an environmentalist. Most of us recognize that fossil fuels
must be extracted responsibly, minimizing environmental damage from mining and drilling
operations, and with due consideration of costs and benefits. Similarly, fossil fuels must
be used responsibly, deploying cost-effective technologies that minimize emissions of real
pollutants such as fly ash, carbon monoxide, oxides of sulfur and nitrogen, heavy metals,
and volatile organic compounds. A baby’s breath is mostly nitrogen, oxygen, water vapor and
carbon dioxide. If fully cleansed of real pollutants, the exhaust from fossil-fuel combustion
only differs from a baby’s breath by having almost no oxygen, most of which has been

1



Figure 1: Atmospheric concentrations of CO2 measured at Mauna Loa, Hawaii [1]. The
monthly values start to decrease in the northern-hemisphere spring, with the beginning of
photosynthesis during the northern growing season, and the concentration begins to increase
in the fall when photosynthesis diminishes but respiration of the biosphere continues. The
growth rate of the average value ( the line without oscillations ) is about 2 parts per million
by volume (ppm) per year. This corresponds to about half of the CO2 emissions from burning
fossil fuels, cement manufacture and other human causes. The other half of the emissions is
absorbed by the oceans and land surface.

converted into water vapor and carbon dioxide.

2 Warming by CO2

Of every million air molecules in today’s atmosphere, about 400 are molecules of CO2. We
therefore say the CO2 concentration is C = 400 ppm (parts per million). This is an average
value, and local values can be very different. For example, exhaled human breath typically
consists of 40,000 ppm to 50,000 ppm of CO2, a fact that should make one wonder about
the campaign to demonize CO2 as a “pollutant.” Without strong ventilation, CO2 levels in
classrooms or courtrooms with lots of people commonly reach 5000 ppm with no apparent
ill effects. On a calm summer day, CO2 concentrations in a corn field can drop to 200 ppm
because the growing corn sucks so much CO2 out of the air [2]. The US Navy tries to keep
CO2 levels in submarines below 5000 ppm to avoid any measurable effect on sailors [3].

Pure CO2 gas is completely transparent, as we know from the fact that human breath,
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with its 4% CO2 content, is normally invisible. On a frosty day the chilled outside air can 
condense the water vapor breath into visible fog.

Around the year 1861, John Tyndall discovered that water-vapor molecules, H2O, CO2

and many other molecular gases that are transparent to visible light, can absorb invisible
heat radiation, like that given off by a warm tea kettle or by the Earth. Today, we call
these greenhouse gases. Commenting on greenhouse warming of the Earth by water vapor
on p. 359 of his classic book, Heat, A Mode of Motion [4], Tyndall makes the eloquent (and
correct) statement:

“Aqueous vapor is a blanket, more necessary to the vegetable life of England
than clothing is to man. Remove for a single summer-night the aqueous vapor
from the air which overspreads this country, and you would assuredly destroy
every plant capable of being destroyed by a freezing temperature. The warmth
of our fields and gardens would pour itself unrequited into space, and the sun
would rise upon an island held fast in the iron grip of frost.”

Tyndall correctly recognized that the most important greenhouse gas of the Earth’s atmo-
sphere is water vapor. CO2 is a modest supporting actor.

The magnitude of the warming from CO2 is a key issue. If increasing CO2 causes large
warming, harm can indeed be done, and it makes sense to talk about a social cost of carbon.
Most studies suggest that warmings of up to 2 K will be good for the planet. So if more
CO2 does not cause warming of more than 2 K, the additional CO2 will be beneficial and
the social cost of carbon will be negative.

The Arrhenius warming formula. The great Swedish chemist, Arrhenius seems to have
been the first to make a quantitative estimate of the warming from CO2 [5]. In 1896, on
page 265 of his pioneering paper [6], On the Influence of Carbonic Acid in the Air upon the
Temperature of the Ground, Arrhenius states that decreasing C by a factor of 0.67 = 2/3
would cause the surface temperature to fall by ∆T = −3.5 K, and increasing C by a factor
of 1.5 = 3/2 would cause the temperature to increase by ∆T = +3.4 K. Summarizing his
estimates, Arrhenius stated,

“Thus, if the quantity of carbonic acid increases in geometric progression, the
augmentation of the temperature will increase very nearly in arithmetic progres-
sion.”

Arrrhenius’s conjecture implies a logarithmic dependence of the temperature increase on the
CO2 concentration C, as represented by the simple formula,

∆T =
S

ln(2)
ln

(

C2

C1

)

, where ∆T = T2 − T1, (1)

or equivalently,
C2

C1

= 2∆T/S. (2)

Here T1 and T2 are the Earth’s equilibrium temperatures at CO2 concentrations of C1 and C2,
and ln(x) denotes the natural logarithm of x, for example, ln(2) = 0.6931. The parameter
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Figure 2: Warming from CO2 for various assumed doubling sensitivities from Eq. (1).
We have used Eq. (7) to calculate the corresponding time (in years) needed to increase
the temperature by 2 K. Observations indicate that the doubling sensitivity is close to the
feedback-free value of S = 1 K, for which 600 years would be needed at the present growth
rate, R = 2 ppm/year.

S, called the doubling sensitivity and normally given in degrees Kelvin (K), is how much the
Earth’s surface average surface temperature will increase if the atmospheric concentrations
of CO2 doubles. The warming functions (1) are plotted in Fig. 2 for a range of possible
doubling sensitivities.

The warming ∆T of (1) is a value averaged over the entire surface of the Earth and over
an entire year. It is a very small number compared to the temperature differences between
day and night, or between winter and summer at most locations on the Earth. The warming
from CO2 is expected to be greater at night than during the day, and greater near the poles
than near the equator.

If a 50% increase of CO2 were to increase the temperature by 3.4 K, as in Arrhenius’s
example mentioned above, the doubling sensitivity would be S = 5.8 K. Ten years later, on
page 53 of his popular book, Worlds in the Making; the Evolution of the Universe [7], Arrhe-
nius again states the logarithmic law of warming, with a slightly smaller climate sensitivity,
S = 4 K,

“If the quantity of carbon dioxide in the air should sink to one half its present
percentage, the temperature would fall by 4 K; a diminution by one-quarter would
reduce the temperature by 8 K. On the other hand any doubling of the percentage
of carbon dioxide in the air would raise the temperature of the Earth’s surface
by 4 K and if the carbon dioxide were increased by four fold, the temperature
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Figure 3: Temperature of the lower atmosphere as observed by satellites. There has been no
appreciable warming since the year 1998. From R. Spencer [10].

would rise by 8 K.”

Many subsequent studies of the physics of greenhouse gases have confirmed Arrhenius’s con-
jecture (1) that the temperature increase ∆T = T2 − T1 due increasing the concentration
of CO2 from C1 with temperature T1 to C2 with temperature T2 should be proportional to
ln(C2/C1). The logarithmic dependence comes from a peculiar detail of how CO2 absorbs
infrared radiation of various frequencies. This peculiarity is not shared with other green-
house gases, like the most important one, water vapor H2O, or the much less important
one, methane CH4. Readers interested in more details about the cause of the logarithmic
dependence can find them in a recent paper by Wilson and Gea-Banacloche [8].

Convection of the atmosphere, water vapor and clouds all interact in a complicated way
with the change of CO2 to give the numerical value of the doubling sensitivity S. His limited
understanding of absorption of radiation by CO2, and of the structure of the atmosphere,
only allowed Arrhenius to make an educated guess of the doubling sensitivity. More than
a century after Arrhenius, and after the expenditure of many tens of billions of dollars on
climate science, the value of S is still an educated guess. The most recent report of the
Intergovernmental Panel for Climate Change (IPCC) states “equilibrium climate sensitivity
is likely in the range 1.5 K to 4.5 K (high confidence)” [9]. As the Roman poet Horace
remarked: Parturient montes, nascetur ridiculus mus, “Mountains will go into labor, a
ridiculous mouse will be born.”

5



Figure 4: A comparison of satellite and balloon observations of the change in the weighted
average temperature of the atmosphere from the surface to 50,000 ft altitude. Courtesy of
J. Christy, [11].

3 Overestimate of S

Contrary to the predictions of most climate models, there has been very little warming of the 
Earth’s surface over the last two decades. As shown in Fig. 3 satellite measurements indicate 
that the lower atmosphere has had no warming for at least 20 years [10]. Models predict that the 
lower atmosphere (the troposphere) should warm more rapidly than the Earth’s surface, the 
opposite of what has been observed. A comparison of observed temperature trends from 
satellites and balloons is shown in Fig. 4. The discrepancy between models and observations is 
also summarized by Fyfe, Gillett and Zwiers [12] as shown in Fig. 5. As one can see from Fig. 5, 
the warming observed over the period 1993-2012 has been about half the predicted value, while 
the observed warming during the period 1998-2012 has been about one fifth of the model 
predictions. And the discrepancy may well be worse than indicated by Fyfe et al.[12], who used 
surface temperature records that are plagued with systematic errors, like urban heat island 
effects [13], that give an erroneous warming trend to the Earth’s surface temperature. The 
satellite data of Fig. 3 and Fig. 4 does not have these systematic errors. 
 At this writing, more than fifty mechanisms have been proposed to explain the discrep-
ancy of Fig. 4 or Fig. 5.  These range from aerosol cooling, to heat absorption by the ocean. Some 
of the more popular excuses for the discrepancy have been summarized by Fyfe et al.[12]. But 
the most straightforward explanation is that the doubling sensitivity, which most models 
assume to be close to “most likely” IPCC value of S = 3 K is erroneous
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Figure 5: Trends in global mean surface temperature. a. 1993-2012. b. 1998-2012. His-
tograms of observed trends (red hatching) are from 100 reconstructions of the HadCRUT4
dataset1. Histograms of model trends (grey bars) are based on 117 simulations of the mod-
els, and black curves are smoothed versions of the model trends. The ranges of observed
trends reflect observational uncertainty, whereas the ranges of model trends reflect forcing
uncertainty, as well as differences in individual model responses to external forcings and
uncertainty arising from internal climate variability. From Fig. 1 of J. C. Fyfe, N. P. Gillet
and F. W. Zwiers [12].

and much too large. If one assumes negligible feedback, that is, that other properties of
the atmosphere change little in response to additions of CO2, the doubling efficiency can
be estimated to be about S = 1 K. The much larger doubling sensitivities claimed by the
IPCC, which look increasingly dubious with each passing year, come from large positive
feedbacks. The most popular feedback mechanism is an increase of water vapor at higher
altitudes of the atmosphere. Changes in cloudiness can also provide either positive feedback
which increases S or negative feedback which decreases S. The simplest interpretation of
the observational data of Fig. 5 is that the net feedback is small and possibly even negative.
For example, recent work by Harde [14] indicates a doubling sensitivity of S = 0.6 K.

4 Time Required to Raise the Temperature by ∆T

Fig. 2 shows that much larger CO2 increases, ∆C = C − 400 ppm, are needed to produce a
given temperature increase ∆T for smaller doubling sensitivities S than for larger sensitivi-
ties. This is also clear from Eq. (2). In this section we give a simple derivation for for how
much time, ∆t, is needed to produce a given temperature increment ∆T .

If the CO2 concentration is C1, at the present time t1, the concentration C2 at a later
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time t2 will be

C2 = C1 +

∫ t2

t1

R(t)dt (3)

where the rate of increase of the concentration at time t is R = dC/dt. For a constant rate
of increase (3) simplifies to

C2 = C1 +R∆t, where ∆t = t2 − t1. (4)

Substituting (4) into (2) and solving for ∆t we find

∆t =
C1

R

(

2∆T/S
− 1

)

. (5)

Using (5) we see that for current CO2 concentration C1 = 400 ppm, the time to raise the
temperature by ∆T = 2 K at the current rate of increase

R = 2 ppm/year, (6)

is
∆t = 200

(

22K/S
− 1

)

years. (7)

The solutions to (7) for various possible doubling sensitivities are shown in years on Fig. 2 at 
the points where the temperature increment functions ∆T (C, S) cross the horizontal line 
corresponding to ∆T = 2 K.

5 Benefits of CO2.

More CO2 in the atmosphere will actually be good for the planet. Few realize that the world
has been in a CO2 famine for millions of years, a long time for us, but a passing moment in
geological history. Over the past 550 million years since the Cambrian [15], when abundant
fossils first appeared in the sedimentary record, CO2 levels have averaged many thousands
of parts per million (ppm) not today’s few hundred ppm, which are not that far above the
minimum level, around 150 ppm, when many plants die of CO2 starvation [16]. A typical
estimate of past CO2 levels in is shown in Fig. 6

√

A particularly dramatic example of the response of green plants to increases of atmo-
spheric CO2 is shown in Fig. 7 from the work of Idso et al. [17]. All green plants grow faster
with more atmospheric CO2. On average it is found that the growth rate is proportional to
the square root of the CO2 concentrations, so the increase in CO2 concentrations from about
300 ppm to 400 ppm over the past century should have increased growth rates by a factor
of about 4/3 = 1.15 or 15%. Most crop yields have increased by much more than 15% over
the past century. Better crop varieties, better use of fertilizer, better water management,
etc. have all contributed. But the fact remains that a substantial part of the increase is due
to more atmospheric CO2, as one would expect from inspection of Fig. 7.

We owe our existence to green plants that convert CO2 molecules and water molecules,
H2O, to carbohydrates with the aid of sunlight. Land plants get the carbon they need from
the CO2 in the air. Most plants draw other essential nutrients, water, nitrogen, phosphorus,
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Figure 6: Estimate of past CO2 levels (1 RCO2 = 280 ppm, my = million years) during
the Phanerozoic, when a clear fossil record can be seen in sedimentary rocks. A typical
Phanerozoic CO2 level is RCO2 = 5 = 1400 ppm, much higher than today’s level of 400
ppm. From R. A. Berner and C. Kothavala [15].

potassium, etc. from the soil. Just as plants grow better in fertilized, well-watered soils, they
grow better in air with several time higher CO2 concentrations than present values. The
current low CO2 levels have exposed a design flaw, made several billion years ago by Nature
when she first evolved the enzyme, Ribulose-1,5-bisphosphate carboxylase/oxygenase, or
“rubisco” for short. Rubisco is the most abundant protein in the world. Using the energetic
molecules, adenosine triphosphate or ATP, produced by the primary step of photosynthesis,
rubisco converts CO2 to simple carbohydrate molecules that are subsequently elaborated
into sugar, starch, amino acids and all the other molecules on which life depends. The last
“c” in the nickname rubisco or “carboxylase” in the full word remind us of rubisco’s design
target, CO2.

At current low levels of atmospheric CO2, much of the available CO2 is used up in full
sunlight and this spells trouble for the plant. The last letter “o” in the nickname rubisco or
the “oxygenase” in the full name remind us that an alternate enzyme target is the oxygen
molecule O2. If rubisco, primed with chemical energy from ATP, cannot find enough CO2, it
will settle for an O2 molecule and produce toxic byproducts like hydrogen peroxide instead of
useful carbohydrates. This "photooxydation” is a serious problem. At current low CO2 levels it 
leads to a reduction of photosynthetic efficiency by about 25% in C3 plants which include
many major crops: wheat, rice, soybeans, cotton and many others. In these plants, the first
molecule synthesized from CO2 has 3 carbons, and they are said to have the C3
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Figure 7: Effect of CO2 on growth of sour orange trees (Citrus aurantium L.) in Phoenix,
Arizona1 (1µL L−1 = 1 ppm) . From Idso and Kimball [17].

photosynthetic pathway. The low CO2 levels of the past tens of millions of years have driven
the development of C4 plants (corn and sugar cane, for example) that cope with oxygen
poisoning of rubisco by protecting it in special structures within the leaf. CO2 molecules are
ferried into the protective leave structure by molecules with 4 carbons, which give the C4
pathway its name. The extra biochemical energy for the more elaborate C4 photosynthetic
pathway comes at a cost, but one that is worth paying in times of unusually low CO2

concentrations, like those today. Thousands of experiments leave no doubt that all plants,
both the great majority with the old-fashioned C3 path, but also those with the new-fangled
C4 path, grow better with more CO2 in the atmosphere [18].

But the nutritional value of additional CO2 is only part of its benefit to plants. Of equal
or greater importance, more CO2 in the atmosphere makes plants more drought-resistant.
Plant leaves are perforated by stomata, little holes in the gas-tight surface skin that allow
CO2 molecules to diffuse from the outside atmosphere into the moist interior of the leaf
where they are photsynthesized into carbohydrates. A leaf in full sunlight can easily reach a
temperature of 30 C, where the concentration of water molecules, H2O, in the moist interior
air of the leaf is about 42,000 ppm, more than one hundred times greater than the 400 ppm
concentration of CO2 in fresh air outside the leaf. And CO2 molecules, being much heavier
than H2O molecules, diffuse more slowly in air. So depending on the relative humidity of the
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Figure 8: Greening of the Earth as observed by satellites.

outside air, as many as 100 H2O molecules can diffuse out of the leaf for every CO2 molecule
that diffuses in, to be captured by photosynthesis. This is the reason that most land plants
need at least 100 grams of water to produce one gram of carbohydrate.

In the course of evolution, land plants have developed finely-tuned feedback mechanisms
that allow them to grow leaves with more stomata in air that is poor in CO2, like today,
or with fewer stomata for air that is richer in CO2, as has been the case over most of the
geological history of land plants. If the amount of CO2 doubles in the atmosphere, plants
reduce the number of stomata in newly grown leaves by about a factor of two. With half
as many stomata to leak water vapor, plants need about half as much water. Satellite
observations like those of Fig. 8 from R. J. Donohue [19] have shown a very pronounced
“greening” of the Earth as plants have responded to the modest increase of CO2 from about
340 ppm to 400 ppm during the satellite era. More greening and greater agricultural yields
can be expected as CO2 concentrations increase further.

6 Summary

1. Observations over the past two decades show that the warming predicted by climate
models has been greatly exaggerated. The temperature increase for doubling CO2

levels appears to be close to the feedback-free doubling sensitivity of S = 1 K, and
much less than the “most likely” value S = 3 K promoted by the IPCC and assumed
in most climate models.

2. If CO2 emissions continue at levels comparable to those today, centuries will be needed
for the added CO2 to warm the Earth’s surface by 2 K, generally considered to be a
safe and even beneficial amount.

3. Over the past tens of millions of years, the Earth has been in a CO2 famine with
respect to the optimal levels for plants, the levels that have prevailed over most of the
geological history of land plants. More atmospheric CO2 will substantially increase
plant growth rates and drought resistance.
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4. Increasing concentrations of CO2 over the next few centuries will benefit the planet,
so there is no social cost of CO2. More precisely, the social cost of CO2, per se, is
negative.
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I. INTRODUCTION 1 

Q. Please state your name, address, and occupation. 2 

A. My name is Robert Owen Mendelsohn. 3 

My professional address is Yale School of Forestry and Environmental 4 

Studies, 195 Prospect Street, New Haven CT 06511.   5 

My occupation is a professor of environmental economics.   6 

Q. Please describe your educational background and professional 7 

experience. 8 

A. I graduated in 1973 from Harvard College, BA, Magna Cum Laude. 9 

I graduated in 1979 from Yale Economics Department, PhD. 10 

I was an assistant professor at the University of Washington, Seattle 1979-11 

1983. 12 

I was a visiting assistant professor at University of Michigan 1983-1984. 13 

I have been a professor at Yale University since 1984.     14 

My official title at Yale University is the Edwin Weyerhaeuser Davis 15 

Professor at the School of Forestry and Environmental Studies, with 16 

appointments in the Department of Economics and the School of 17 

Management.   For the last 22 years, I have been working on measuring the 18 

benefits of mitigating greenhouse gas emissions. I have written 8 books and 19 

63 peer reviewed articles on climate change impacts.    20 

II. OVERVIEW OF OPINIONS 21 

Q. What are the purposes of your testimony in this proceeding? 22 

A. My purpose is to provide insight into how to measure the “Social Cost of 23 

Carbon” (SCC) to help guide Minnesota’s decision on how to place a value 24 

on a ton of carbon dioxide (CO2) emission.   25 



Robert Mendelsohn Direct 
OAH 80-2500-31888 

MPUC E-999/CI-14-643 
 

2 
6988782 v1 

Q. Could you summarize your principal conclusions and 1 

recommendations?  2 

A. First, using the results of DICE, one of the Integrated Assessment Models 3 

that has been used widely to study climate change, my estimate of the SCC 4 

is between $4 and $6/ton, under the assumptions identified in Table 1 of my 5 

attached report.     6 

Second, my estimate is a conservative one.  Recent evidence, as discussed in 7 

the reports of Professors Lindzen, Happer, and Spencer, suggest that the 8 

climate sensitivity assumed by the Intergovernmental Panel on Climate 9 

Change (IPCC) is overstated. Roy Spencer notes that historical observed 10 

warming has been much less than climate models predicted.  This raises 11 

questions about whether the range of climate sensitivity suggested by the 12 

IPCC is too high. W. Happer (2015) argues that climate sensitivity is likely 13 

to be 1, which would be the effect of just increasing carbon dioxide alone.  14 

He argues there are no positive feedbacks from this forcing which would 15 

cause the climate sensitivity to be higher. Richard Lindzen (2015) argues in 16 

his testimony that the climate sensitivity could be between 0.85C and 1.5C 17 

and is very likely less than 2C.  If the climate sensitivity is 1.5 (as Dr. 18 

Lindzen and others have suggested), the SCC lies between $0.30 and 19 

$0.80/ton, as shown in Table 2 of the Report. If the climate sensitivity value 20 

is 2.0, the SCC lies between $1.10 and $2.00/ton, as shown in Table 2. 21 

Third, it would be inadvisable to adopt the current Federal SCC as estimated 22 

by the Federal Interagency Working Group on Social Cost of Carbon (IWG).  23 

Although well intentioned, the IWG made numerous theoretical and 24 

modeling errors and significantly overestimated the SCC.   25 

Q. Have you prepared a report that contains your opinions? 26 
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A. The attached report contains the details behind my opinion. 1 

III. SOCIAL COST OF CARBON 2 

Q. How is the social cost of carbon defined? 3 

A. The social cost of carbon (SCC) measures the additional damage caused by a 4 

ton of carbon dioxide emission.  Carbon dioxide emissions last for many 5 

decades in the atmosphere.  The SCC is the present value of this stream of 6 

damage, the sum of the discounted future damage in todays’ dollars.  The 7 

current SCC in 2015 measures the damage from adding a ton of carbon 8 

dioxide to the atmosphere today. 9 

Q. Which social cost of carbon is appropriate for policy purposes? 10 

A. What I call the “optimal SCC” is the appropriate social cost of carbon for 11 

policy purposes.  The optimal social cost of carbon minimizes the present 12 

value of the sum of the climate damage and the mitigation cost to society. It 13 

reduces emissions until the cost of the last reduction is just equal to the 14 

marginal damage removed. The optimal policy equates the marginal cost of 15 

mitigation to the social cost of carbon.  16 

If the government intends to use the social cost of carbon as a price for 17 

carbon in making future mitigation decisions, the government is going to 18 

equate the marginal cost of mitigation to the social cost of carbon. If it 19 

measures the social cost of carbon given the optimal path, the program will 20 

be perfectly efficient. This is the only measure that will lead to an efficient 21 

mitigation program.  22 

Q. How does the cost of carbon in the United States compare to the global 23 

social cost of carbon? 24 

A. The American Cost of Carbon reflects the damage just in the United States. 25 

If the purpose of a law is to protect American citizens and their interests, it is 26 
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only the American Cost of Carbon that matters.  The American Cost of 1 

Carbon is currently about 5% of the global SCC.  Most of the current 2 

damage from climate change is concentrated in the low latitude countries of 3 

the world.    4 

Q. What would happen if the U.S. spent money on mitigation in 5 

accordance with a globally or nationally calculated social cost of carbon 6 

while the rest of the world did not? 7 

A. If the United States acted unilaterally to control emissions, the US would 8 

pay the full cost of these emission reductions, but they would get only about 9 

5% of the benefits. The remaining 95% of benefits would go to people from 10 

other countries, primarily living in the low latitudes. With only the United 11 

States doing mitigation, the program would be very wasteful because it 12 

would rely on high cost mitigation in the United States and not take 13 

advantage of the many low cost opportunities to mitigate around the world.     14 

Q. How does the cost of carbon in Minnesota compare to the U.S. national 15 

social cost of carbon? 16 

A. I believe that Minnesota is currently a net beneficiary of warming. 17 

Minnesota has no coastline along the Atlantic to suffer from sea level rise or 18 

future tropical cyclones.  A warmer, wetter, CO2-enriched world would be a 19 

clear gain for Minnesota agriculture. Ecological models suggest that 20 

Minnesota forests would become more productive and have more standing 21 

biomass as a result of near term climate change. A slightly warmer winter is 22 

likely to be beneficial as well and would offset possible damage from a 23 

slightly warmer summer.   The state is not likely to be a net beneficiary if 24 

near term emissions are reduced.   25 
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Q. What would happen if Minnesota spent money on mitigation in accordance 1 

with a globally or nationally calculated social cost of carbon while the rest of 2 

the world did not? 3 

A. Minnesota does not contribute enough greenhouse gas emissions to be able 4 

to make much difference to global temperatures. So a Minnesota alone 5 

mitigation program would be costly to Minnesota and make only the 6 

smallest (and likely an imperceptible) change in the climate. Minnesota as a 7 

whole would not benefit. The current state cost of carbon is likely negative.   8 

The biggest problem with Minnesota being the only state with a high price 9 

on carbon is the economic cost to the state. There are few low cost options to 10 

reduce carbon in the state.  Minnesota would have to resort to high cost 11 

options while the surrounding states did very little.  In fact, the surrounding 12 

states could very well take advantage of the situation and try to lure 13 

Minnesota businesses to move to their state so as to avoid the high price of 14 

carbon in Minnesota. This well-known “leakage” problem is one of the 15 

reasons why economists argue for a universal price of carbon. 16 

IV. OVERVIEW OF MODELS 17 

Q. Are you familiar with the Integrated Assessment models used by the 18 

Interagency Working Group to calculate the federal social cost of 19 

carbon? 20 

A. I am familiar with the three Integrated Assessment Models used by the 21 

Interagency Working Group: DICE, FUND, and PAGE.  I have read papers 22 

about all three models and I know the creators of all three models.  23 

Q. Can you describe DICE and how it works? 24 

A. DICE is an Integrated Assessment Model of the global economy that 25 

predicts future economic growth, energy demand, and greenhouse gas 26 
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emissions. The model also captures how emissions alter greenhouse gas 1 

concentrations, temperature, and global climate damage. The model is 2 

designed to calculate optimal mitigation strategies that balance the cost of 3 

emission reductions against the benefit of reduced damage.      4 

Q. Can you describe your past experience with the DICE model? 5 

A. The DICE model is relatively easy to use and so I have combined the model 6 

with other research I have done on mitigation. For example, I used DICE to 7 

understand how important storing carbon in forests might be as a mitigation 8 

strategy. I have also used DICE to understand how changing estimates of 9 

land use emissions might affect global mitigation strategies.  10 

Q. Can you describe the FUND model and how it works?  11 

A. The structure of the FUND model is similar to the DICE model in that it has 12 

a model of the economy integrated with a model of climate and climate 13 

impacts. The most significant difference in the FUND model is that it has a 14 

much more detailed model of climate damage. FUND breaks the world into 15 

several large regions and calculates the damage in each region by market 16 

sectors such as agriculture, forest, water, coastal, and energy as well as by 17 

nonmarket sectors such as human health and ecosystems. Like DICE, FUND 18 

calculates future emissions of greenhouse gases. It is also an optimizing 19 

model designed to calculate the optimal mitigation path.  I am familiar with 20 

the damage estimates made by FUND and find that they are generally quite 21 

consistent with my own research on damage.  22 

Q. Do the FUND and DICE models tend to produce comparable results? 23 

A. The FUND and DICE models react to stimulus in very similar ways. Faster 24 

economic growth lead to more emissions, faster technical change in 25 

mitigation lead to increases in mitigation over time, and more mitigation 26 
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leads to lower damage.  When comparing them directly, the DICE model 1 

assumes that damage increases more rapidly with warming. FUND assumes 2 

that damage is minimal at low levels of warming. DICE consequently 3 

generates a higher estimate of the social cost of carbon than FUND.  I 4 

believe that the FUND damage function is more accurate than the DICE 5 

damage function, especially for near term temperature changes. But the 6 

models are similar. 7 

Q. What is your opinion regarding the reliability of the PAGE model? 8 

A. The PAGE model is a simulation model that was designed to reflect 9 

uncertainty that modelers might have about the parameters of the model.  10 

The model was not designed to optimize and so is not a reliable model for 11 

predicting the optimal path of mitigation. The model was also intended to be 12 

a tool for people to explore whatever assumptions they wished to make 13 

about parameters.  So the model is less careful about grounding assumptions 14 

in empirical evidence. It is more of a tool to explore one’s imagination about 15 

what climate change could be.  As such, I have little confidence in the 16 

results generated by PAGE in contrast to the two other models used by the 17 

Interagency Working Group: DICE and FUND.  The PAGE model captures 18 

the imagination of academics but is not well grounded in economic theory or 19 

empirical evidence.   20 

V. DICE MODEL 21 

Q. Have you prepared calculations of the social cost of carbon using the 22 

DICE model? 23 

A. I have downloaded the most recent version of DICE (DICE2013) from 24 

Professor William Nordhaus’s website in order to calculate the social cost of 25 

carbon in DICE.  26 
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Q. Does the DICE model include any parameters that can be adjusted? 1 

A. The DICE model comes with baseline assumptions about the important 2 

parameters that affect the social cost of carbon. These baseline parameter 3 

values reflect the learned opinions of Professor Nordhaus.   4 

However, the model is relatively transparent so that it is possible to adjust 5 

these assumptions and test how they affect the social cost of carbon.   6 

Q. What parameters have you adjusted? 7 

A. The key parameters that I have explored include the shape of the damage 8 

function, climate sensitivity, and the discount rate.    9 

Q. Does the DICE model contain a “damage function” component? 10 

A. The damage function in DICE predicts the damage each future year based on 11 

the GDP of that year and the predicted temperature change that year. The 12 

DICE model assumes that damage is proportional to GDP. A doubling of the 13 

size of the global economy thus doubles the damage.  DICE also assumes 14 

that the damage as a proportion of GDP increases with the square of 15 

temperature change.  A 2°C warming is assumed to cause damage equal to 16 

1% of GDP.  A 4°C warming is assumed to increase that percentage to 4% 17 

of GDP. Future damage thus accelerates quickly as temperatures warm.  18 

Finally DICE assumes that the preindustrial temperature (the global 19 

temperature effectively in 1900) was the optimal temperature. Any increase 20 

from 1900 is therefore harmful.      21 

Q. Have you made adjustments to the damage function of the DICE 22 

model? 23 

A. Empirical research suggests that the optimal temperature for the world may 24 

well be slightly higher than the temperature in 1900.  A slightly warmer, 25 

wetter, and CO2–enriched world may be a better place.  The research 26 
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indicates that warming of 1.5-2°C may be slightly beneficial.  Given that 1 

today’s temperature is already 0.8°C warmer than in 1900, the research is 2 

indicating that another 0.7-1.2°C of warming could lead to small net 3 

benefits. Of course, this is not to imply that mankind should try to tamper 4 

with the temperature of the planet.  It merely notes that there is scant 5 

evidence that warming of this magnitude leads to harmful net impacts.  6 

I have consequently developed two alternative damage functions in DICE 7 

that adjust the temperature upon which net damages begin.  One modified 8 

damage function assumes that net damage will not begin until temperature 9 

rises above 1.5°C and the other modified damage function assumes net 10 

damage does not begin until temperature rises 2°C above 1900 levels.    11 

I then calculate the social cost of carbon with both (the 1.5°C, and the 2.0°C) 12 

damage functions.   13 

Q. Can you explain your basis for making those adjustments? 14 

A. Over the last 20 years, I have been measuring climate damage all over the 15 

world. I have used empirical research, integrated simulation models, and 16 

ecosystem models to capture effects in many of the sectors that will be 17 

affected. The results generally favor the assumption in the DICE model that 18 

damage is a quadratic function of global temperature change. However, the 19 

results do not suggest that the 1900 global temperature was the “optimal” 20 

climate.  In contrast, the results suggest that a slightly warmer climate is in 21 

fact “optimal”.  That is, net global benefits are maximized at a temperature 22 

slightly warmer than 1900 (1.5°C, and the 2.0°C warmer).  These 23 

temperatures are slightly warmer (0.7°C to 1.2°C) than the temperature we 24 

experience today.  25 
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Higher levels of carbon dioxide lead to carbon fertilization of plants. That is, 

higher carbon dioxide levels increase plant productivity and make them 

slightly more drought resistant.  Doubling carbon dioxide is expected to 

increase crop productivity by 30% and tree productivity by as much as 70%. 

These effects dominate the initial impacts over the next several decades to 

the forest and agriculture sectors. The carbon fertilization of trees has also 

led to an overall increase in ecosystem productivity and standing biomass 

which is an overall net benefit for ecosystems. 

These broad statements about net global impacts  summarize a complex set 

of changes. The impact of climate change is very different across the world. 

In general, the nations near the low latitudes are already too warm.  For 

them, warming starting in 1900 was immediately harmful. The low latitude 

countries would benefit from a global temperature that is cooler than the 

temperature in 1900. For the mid-latitudes, the net effect of warming from 0- 

2°C is slightly beneficial as the benefits slightly outweigh the damage.  For 

the high latitudes, the evidence suggests that warming of 0-2°C provides 

larger net benefits.  Another point that is important to understand is that the 

effect of warming is different in each affected sector. There can be some 

damage in places that generally benefit from warming and some benefits in 

places that are overall harmed by warming. For example, tropical countries 

with net damage from warming are nonetheless getting ecosystem benefits 

from the increase in ecosystem productivity and biomass. Similarly, in 

places like Minnesota where there are net benefits, there are still damages 

associated with global warming such as hotter summers.  The net 

measurement is merely an indication of the relative size of the benefits 

versus the damage.  26 
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Q. What is a discount rate? 1 

A. The discount rate is the price of time. It is a reflection of the fact that that 2 

there is an interest rate which causes wealth to grow over time. For example, 3 

the (inflation adjusted) market rate of interest has been about 5% for more 4 

than a century. If society invests in the market rate of interest, resources 5 

grow exponentially at that interest rate. The discount rate accounts for this 6 

interest rate when comparing future dollars with current dollars. Future 7 

dollars are discounted back to today using that very same interest rate. The 8 

discount rate affects the social cost of carbon because so much of the 9 

damage caused by a ton of carbon dioxide occurs far into the future.  10 

Q. Can policymakers choose whatever discount rate suits them?  11 

A. The interest rate is determined by global savings and investment. It is a 12 

market rate that reflects how much people are willing to save and the 13 

productivity of capital investments.  Society can raise the interest rate by 14 

taxing capital and they can lower the interest rate by subsidizing capital.  15 

However, if policy makers arbitrarily choose different discount rates for 16 

different projects, they are implicitly adjusting the rate of return in just those 17 

projects. For example, if the government chooses to use 3% as the discount 18 

rate for mitigation and 5% for all other private and public projects, they are 19 

implicitly choosing to get a 3% rate of return on mitigation. The mitigation 20 

program would consequently be a relatively poor investment of public funds 21 

compared to other choices. Society would be better off investing current 22 

mitigation into a market fund that would pay for future mitigation. So there 23 

are deleterious consequences to selecting different discount rates for 24 

different projects which is why the Office of Management and Budget 25 

(OMB) encourages all agencies to use the same discount rate. 26 
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Q.      What discount rates have you considered in your calculations? 1 

A. The discount rate in DICE is calculated internally to be consistent with the 2 

growth in GDP per capita.  As long as the economy grows at the rate we are 3 

familiar with (2% per year), the interest rate is expected to remain at 5%.  4 

However, if the growth rate of the economy slows in the far future as DICE 5 

predicts, the interest rate will fall to slightly lower levels. My baseline 6 

assumption is that the discount rate in DICE (the interest rate) is a 7 

reasonably appropriate and conservative estimate of the discount rate. 8 

However, some calculations of the social cost of carbon have used constant 9 

discount rates that do not adjust with the growth rate of income. I have 10 

calculated what effect choosing alternative constant discount rates have upon 11 

the social cost of carbon.   12 

Q. What discount rates are recommended by the federal Office of 13 

Management and Budget? 14 

A. The Office of Management and Budget generally argues that public projects 15 

should use the market rate of interest (currently 5%). In cases where 16 

regulations force private companies to invest in projects with risky benefits, 17 

the Office of Management and Budget recommends a 7% discount rate.  18 

Because climate change involves scientific uncertainties, a 7% discount rate 19 

may be fitting given the inherent risks associated with this uncertainty. 20 

Q. What discount rates are used by the federal government’s IWG to 21 

calculate the social cost of carbon? 22 

A. The Interagency Working Group uses three constant discount rates to 23 

calculate the social cost of carbon: 2.5%, 3%, and 5%.  24 

Q. What is a climate sensitivity value? 25 
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A. The climate sensitivity is an atmospheric-oceanic science calculation that 1 

expresses the consequence of doubling greenhouse gases on long run 2 

temperature. For example, the best guess of the IPCC is that the climate 3 

sensitivity is 3.  This implies that a doubling of CO2 in the atmosphere leads 4 

to a long run temperature increase of 3°C. Note that it may take many 5 

centuries for the climate to reach the long run temperature given any 6 

particular level of greenhouse gases.    7 

Q. What climate sensitivity values are used by the IWG? 8 

A. The IWG explore a range of climate sensitivity factors given by a 9 

probability function. The mean climate sensitivity in their analysis is 3.5 and 10 

the 95% confidence interval is 1.7 to 7.1.  These values are slightly higher 11 

than what the IPCC recommends which is a best guess of 3 and a likely 12 

range of 1.5 to 4.5. 13 

Q. Have you consulted the testimony of Professors Richard Lindzen, 14 

William Happer and Roy Spencer in this proceeding? 15 

A. Yes. 16 

Q. What climate sensitivity values do Professors Lindzen, Happer, and 17 

Spencer believe are appropriate, based on the scientific evidence? 18 

A. Professor Lindzen argues in his testimony that the climate sensitivity could 19 

be between 0.85C and 1.5C and is very likely less than 2C.  Professor 20 

Happer argues that the climate sensitivity is 1.  This is the value that carbon 21 

dioxide all by itself would cause.  He argues there are no positive feedback 22 

effects that would lead to higher values. Dr. Spencer argues that the historic 23 

temperature record suggests a much slower path of warming than the climate 24 

model predictions. Dr Spencer’s observation implies that either the climate 25 

models have too high a climate sensitivity (as suggested by both Professor 26 
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Happer and Lindzen) or that they have too quick of an adjustment rate for 1 

transient temperatures. In either case, damage which depends on the actual 2 

temperature is postponed into the future.  The SCC should be lower than the 3 

Integrated Assessment models currently predict in order to be consistent 4 

with the current empirical evidence. 5 

Q. What sensitivity values have you used in your analysis? 6 

A. I have explored a wide range of climate sensitivity values including 1, 1.5, 2, 7 

2.5, 3, and 4.5.  8 

Q. Can you explore the effect of uncertainty using DICE?  9 

A. I have explored how uncertainty about the damage function, climate 10 

sensitivity, and the discount rate each affect the optimal social cost of 11 

carbon.  By varying these parameters, one can test how they affect the 12 

possible distribution of the social cost of carbon.   13 

VI. RESULTS 14 

Q. Can you summarize the results of your calculations of the social cost of 15 

carbon produced by the DICE model as you have modified it? 16 

A. If I rely on the baseline parameters in DICE, the IPCC estimate of climate 17 

sensitivity of 3, and include what I believe to be a more accurate damage 18 

function based upon more recent empirical evidence, the resulting social cost 19 

of carbon lies between $4-$6/ton. If climate sensitivity is 1.5, the social cost 20 

of carbon is between $0.30 and $0.80, as shown in Table 2 of my Report.  If 21 

the climate sensitivity value is 2.0, the SCC lies between $1.10 and 22 

$2.00/ton, as shown in Table 2.   23 

Q. Why is a range of values appropriate? 24 

A. It is not possible to identify a single value of the social cost of carbon given 25 

the wide uncertainty about future events.  The range of values illustrates the 26 
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uncertainty surrounding the estimate given our current scientific and 1 

economic understanding. 2 

Q. In your opinion, what is the most reasonable and best available estimate 3 

of the social cost of carbon, based on the available data and current 4 

scientific understanding? 5 

A. My estimate of the social cost of carbon is between $4-6/ton of CO2.  This 6 

estimate is conservative, in light of the testimony of Professors Lindzen, 7 

Happer and Spencer.  If the climate sensitivity is 1.5 (as Dr. Lindzen and 8 

others have suggested), the SCC lies between $0.30 and $0.80/ton.  If the 9 

climate sensitivity value is 2.0, the SCC lies between $1.10 and $2.00/ton.  10 

These values are consistent with the current Minnesota values for 2014, 11 

which were reported to be between a low of $0.44/ton and a high of 12 

$4.53/ton   13 

VII. IWG’S SOCIAL COST OF CARBON 14 

Q. Do you agree with the federal social cost of carbon calculated by the 15 

IWG? 16 

A. The IWG made many mistakes when calculating the social cost of carbon. 17 

The resulting calculations overstate the social cost of carbon a great deal. 18 

Q. What conceptual error did the IWG make in their calculation of the 19 

social cost of carbon?  20 

A. The IWG calculated the social cost of carbon assuming zero abatement not 21 

only today but forever. Not only in the United States but everywhere. This is 22 

a mistake for several reasons.  First, we are already doing some mitigation.  23 

Second and more importantly, the moment that the federal social cost of 24 

carbon was first used for policy, it became an overestimate of damage. That 25 
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is, the value did not take into account the mitigation that was being done.  1 

The IWG made a conceptual error by measuring the wrong SCC.   2 

Q. Did the IWG use the Integrated Assessment Models correctly?   3 

A. The IWG used three Integrated Assessment models (DICE, FUND and 4 

PAGE) to calculate the social cost of carbon, but it did not use them 5 

correctly.   6 

 The IWG substituted many of their own assumptions instead of using the 7 

assumptions in each model. For example, the IWG made its own 8 

assumptions about GDP, discount rates, and emissions.  The IWG 9 

assumptions are not consistent with each other much less with the models. 10 

For example, different GDP paths imply different future interest rates.  The 11 

interest rates in the IWG were not consistent with their assumptions about 12 

GDP.   13 

The IWG did not use the climate sensitivities in the Integrated Assessment 14 

models. The IWG used their own estimate of climate sensitivity. 15 

The only part of each model that the IWG appears to have used is the 16 

damage function.     17 

Q. Does the IWG properly account for the uncertainty surrounding the 18 

social cost of carbon? 19 

A. Because the IWG did not take into account mitigation, they also failed to 20 

capture how society will likely react as it learns more about climate change. 21 

They effectively assumed that uncertainty never gets resolved. They assume 22 

society is just as uncertain in 2300 about the various parameters of the model 23 

as it is today. But society will learn about climate change as the planet 24 

warms. We will see how quickly temperature changes. We will see what the 25 

damages are.  For example, we will find out whether or not there are a 26 
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trillion dollars of damage per year in 2050 when it becomes 2050. If society 1 

finds out that climate change is more harmful than we thought, society will 2 

react and do more mitigation.    The importance of long term uncertainty 3 

falls as we learn and act. By assuming that society will never mitigate 4 

greenhouse gases, the IWG has overblown the harm from greenhouse gases 5 

and the importance of uncertainty.   6 

Q. Do you believe that the IWG’s approach produces a scientifically valid 7 

and accurate calculation of the social cost of carbon? 8 

A. The IWG has vastly overstated the social cost of carbon. It states that it uses 9 

the DICE and FUND model to calculate the social cost of carbon, but it 10 

really has substituted its own unfounded assumptions for both models.   11 

Q. Can you explain your reasoning? 12 

A. The IWG should not have assumed that there will be zero future mitigation. 13 

The IWG should not have used such low discount rates.  The IWG should 14 

have adjusted the damage function downward. The IWG should not have 15 

assumed that society would never learn about climate change. All these 16 

errors cascade upon each other, over emphasizing effects which might or 17 

might not happen hundreds of years from now, and exaggerating the damage 18 

of a ton of emission today. For all of these reasons, the IWG vastly 19 

overestimated the social cost of carbon. 20 
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Minnesota	SCC	Decision	

Robert Mendelsohn 
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I.	 Introduction	and	Summary	

I am the Edwin Weyerhaeuser Davis Professor at Yale University in the School of 

Forestry and Environmental Studies.  I have been a Professor at Yale since 1984. My expertise is 

in environmental economics where I have specialized in measuring the benefits to society of 

protecting the environment.   

This report provides insight into how to measure the “Social Cost of Carbon” (SCC) to 

help guide Minnesota’s decision on how to place a value on a ton of carbon dioxide (CO2) 

emission.  Minnesota has already set an environmental cost of carbon in a range of $0.44 to 

$4.53/ton. My principal opinions are:  

1. Using the results of DICE, one of the Integrated Assessment Models that has been

used widely to study climate change, my estimate of the SCC is between $4 and $6/ton, 

assuming the DICE discount rate (starting at 5% today, falling to 2.7% in 2200), a climate 

sensitivity of 3 as used by the Intergovernmental Panel on Climate Change (IPCC), and DICE 

damage functions that I have improved upon based on the available empirical evidence (optimal 

temperatures are 1.5°C above preindustrial levels and 2.0°C above preindustrial levels), as 

shown in Table 1 of the Report.    
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2.  My estimate is a conservative one.  Recent evidence, as discussed in the reports of 

Professors Lindzen, Happer, and Spencer, suggest that the IPCC climate sensitivity is overstated. 

Roy Spencer notes that historical observed warming has been much less than climate models 

predicted.  This raises questions about whether the range of climate sensitivity suggested by the 

IPCC is too high. William Happer (2015) argues that climate sensitivity is likely to be 1, which 

would be the effect of just increasing carbon dioxide alone.  He argues there are no positive 

feedbacks from this forcing which would cause the climate sensitivity to be higher. Richard 

Lindzen (2015) argues in his testimony that the climate sensitivity could be between 0.85C and 

1.5C and is very likely less than 2C.  If the climate sensitivity is 1.5 (as Dr. Lindzen and others 

have suggested), the SCC lies between $0.30 and $0.80/ton, as shown in Table 2 of the Report.  

If the climate sensitivity value is 2.0, the SCC lies between $1.10 and $2.00/ton, as shown in 

Table 2.  

3. It would be inadvisable to adopt the current Federal SCC as estimated by the 

Federal Interagency Working Group on Social Cost of Carbon (IWG).  Although well 

intentioned, the IWG made numerous theoretical and modeling errors and significantly 

overestimated the SCC.   

II.	 	 Foundational	Concepts.		

	 A.	 What	is	climate	change?	

In order to measure the damage caused by climate change, one must first define what is 

meant by climate change. There is a great deal of popular confusion between weather and 

climate change. Within every climate, there are day to day and year to year changes in 

temperature and precipitation that we call weather.  Weather changes are natural and would 
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occur even without climate change. That is, the weather changes even if there is no climate 

change.  Climate change refers to changes in our 30-year weather. For example, scientists have 

observed an increase in the planetary 30-year mean temperature over preindustrial temperatures 

of 0.8⁰C. This is quite distinct from the fact that summer temperatures are higher than winter 

temperatures or that one particular day in August may be very hot.  In addition to changes in 

mean values, the climate also entails variance.  For example, yearly temperature will vary around 

the 30-year mean given a particular variance within a single climate. Climate change could entail 

a change in that variance. Finally, the climate also entails extreme events such as tornadoes and 

tropical cyclones (hurricanes). Extreme events are rare but natural as well. For example, 

hurricanes are part of the pre-industrial climate. We have records of them over human history.  

For example a hurricane heavily damaged the Spanish armada sent by Spain to conquer England 

in the time of Queen Elizabeth I. The existence of a hurricane does not imply climate change. 

But climate change can entail a change in the frequency or intensity of extreme events such as 

hurricanes.  

The popular press and therefore the public are confused about weather versus climate 

change. Every hurricane that hits a major city is reported in the news today as evidence of 

climate change.  Although the damage per storm has increased because there is more in harm’s 

way today than in the past (Pielke et al. 2008), extreme events such as tropical cyclones have not 

changed in either their intensity or their frequency in the last 100 years (Landsea et al. 2006). 

That is, hurricanes are not yet evidence of climate change.  Weather events such as floods and 

droughts continue as in the past (Pielke 2014). The harm that these events cause has increased 

because there is more in harm’s way, but there is scant evidence that climate change has altered 

the frequency or intensity of extreme events to date.  In short, most of the damage that has been 
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attributed to climate change in the popular press is actually due to weather.  Even if we return 

greenhouse gas concentrations to their 1900 level immediately, the weather will continue 

because the current weather is part of our current climate.  

	 B.	 Global,	National,	or	Minnesota	Impacts		

The SCC is defined as the additional damage caused by a ton of carbon dioxide emission.  

Carbon dioxide emissions last for many decades in the atmosphere so that it is important to 

measure these impacts over a long time horizon.  The SCC is the present value of this stream of 

damage, the sum of the discounted future damage in today’s dollars.  The current SCC in 2015 

measures the damage from adding a ton of carbon dioxide to the atmosphere today. 

When guiding global policy, the SCC should measure the damage around the globe. This 

is the damage a ton of emission would theoretically cause across the world.  The optimal global 

greenhouse gas strategy would have every emitter in the world equate their marginal cost of 

abatement to this single price.  

Because federal and state laws and regulations are sometimes written with only national 

and state goals in mind, it is helpful to define a few other measures of the benefits of greenhouse 

gas mitigation.  The marginal damage just inside the United States of a ton of emissions would 

be the American Cost of Carbon (ACC).  To the extent that federal laws have the explicit 

intention of protecting American health and welfare, the ACC is the appropriate measure of these 

benefits. The ACC is currently about 5% of the global SCC.  That is, America will endure only 

5% of the global damage from climate change over the next century.  Most of the damage from 

climate change will be concentrated in countries in the low latitudes (Mendelsohn et al. 2006).  
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The marginal damage to Minnesota of a ton of emissions would be the Minnesotan Cost 

of Carbon (MCC) which is at most 2% (one-fiftieth) of the ACC.  Research suggests that damage 

in America will be concentrated in the warmer states along its southern border (Mendelsohn, 

Nordhaus, and Shaw 1994; 1996; Mendelsohn and Neumann 1999, Mendelsohn 2003).  

Minnesota will likely benefit from current emissions although that will not likely remain true 

indefinitely.  At the moment, the maximum Minnesotan share of the global SCC is 0.1% (one 

one-thousandth) of the SCC but the MCC is most likely negative.  Reducing a ton of emissions 

today is not likely to lead to a net benefit for Minnesota.        

It is important to understand which of the above measures to use for public policy.  If the 

United States moves forward unilaterally and the rest of the world watches, the United States 

could spend a great deal on mitigation but the benefits to Americans would be quite small. The 

reward to Americans is what the ACC measures. America would receive about 5% of the global 

benefits.  The remaining 95% of the benefits would go to the rest of the world.1  Finally, if 

Minnesota leads the world with greenhouse gas mitigation, the benefit to the people of 

Minnesota would be only the MCC.  Reducing emissions today will likely make Minnesota 

slightly worse off because the state is currently a net beneficiary of warming.  I discuss the 

reasoning behind this conclusion below.      

 C. Measuring Marginal Damage  

The marginal benefit that society reaps from mitigating a ton of greenhouse gas is equal 

to the damage that ton would cause. The marginal damage rises as emissions increase.  Partly 

                                                            
1 If the entire world engages in mitigation, the entire world would benefit.  The world should 
adopt the most efficient global program which would entail using the optimal global SCC for 
every emitter. 
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this is because of the dose response function which tends to be S-shaped.  At very low 

concentrations, emissions tend to do little harm to people and other living things.  But as 

concentrations rise, the harm increases nonlinearly.  In addition, people tend not to care much 

about minor damage from pollution. But as the damage becomes ever more severe, the value that 

people place on additional damage rises.  As air quality deteriorates, people care more and more 

about protecting the air quality they have left.  For both these natural science reasons and 

because of people’s values, the marginal damage function rises with emissions.        

Figure 1 illustrates this simple principle. As pollution increases along the horizontal 

access, the marginal damage people at large would place on the last emission would rise. The 

marginal damage depends upon where along this figure you measure it.  For policy analysis, one 

should measure the marginal damage associated with each policy choice. That is, one should use 

the marginal damage that results from the chosen policy.   
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Figure 1: Marginal Damage Function

 

If there is no mitigation and pollution is at Qmax, the marginal damage in Figure 1 would 

be MDmax. This is the damage one would observe if there was no pollution policy. If the policy 

was Q1, the correct marginal damage would be MD1.  The marginal damage therefore depends 

upon the level of mitigation that will be caused by the policy.    

 If the planned policy equates marginal cost to the social cost of carbon and the social 

cost of carbon is equal to marginal damage, the policy will be efficient.  This optimal policy will 

maximize the net benefits to society.  Figure 2 illustrates this point by adding a marginal cost of 

mitigation function to Figure 1.  The optimal policy, MD*, equates marginal cost and marginal 

damage.  The correct place to measure the SCC is at the optimal mitigation level Q*. The SCC at 

this point is equal to MD*. 
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Figure 2 Optimal SCC where MD*=MC 

 

If the government intends to use the SCC to determine the appropriate amount of money 

to spend on mitigation, the government intends to equate marginal cost to the SCC.  The only 

measure of the SCC that makes sense in this case is MD*.  However, some calculations of the 

SCC use MDmax which assumes no mitigation.  If the government equates marginal cost to 

MDmax, the government will mitigate and so the assumption of zero mitigation is violated.  

MDmax overestimates the SCC the moment the mitigation begins. 

	 D.	 Federal	SCC	

The federal government is in the process of establishing a single value of the SCC across 

all of its agencies.  An initial set of values for the SCC was announced in 2010 (Interagency 

Working Group on Social Cost of Carbon 2010). A revision was then announced in 2013 

(Interagency Working Group on Social Cost of Carbon 2013). There is discussion of yet a third 
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revision to come using the National Academy of Science.  Within the two announced reports, 

there are four different values for the SCC.  The SCC values in 2010 are $7, $26, $42 and 

$81/ton CO2.  The SCC values in 2013 are $12, $43, $65, and $129/ton CO2 (all measured in 

2007 USD).    

All the measures in both reports reflect uncertainty about future outcomes. However, one 

outcome the report assumes for certain is that there will be no mitigation.  No mitigation in the 

past, no mitigation now, and no mitigation in the future.  In addition, the first three measures in 

each report correspond to different fixed discount rates.  The discount rates weight the 

importance of far future consequences against current economic choices. The first three 

measures correspond to using constant discount rates of 5%, 3%, and 2.5%, respectively.  The 

final number in each report evaluates the uncertainty of the calculation using the 3% discount 

rate.  The value specifically represents the upper 95% uncertainty band around the 3% discount 

rate estimate.   

The first set of estimates by the IWG is based on the 2007 versions of three Integrated 

Assessment Models (IAMs): DICE, FUND, and PAGE.  The second set of measures by the IWG 

is based on the 2010 versions of the same three models.  The DICE and FUND models are 

carefully calibrated economic models.  They have been used extensively to estimate the optimal 

mitigation option for climate change.  PAGE is not an optimizing model.  It is used primarily to 

illustrate what might happen if a modeler made very different assumptions.  The PAGE model 

captures the imagination of academics but is not well grounded in economic theory.  The two 

reliable models for estimating the optimal SCC in the IWG exercise are the DICE and FUND 

models.    
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Although the IWG was probably well intentioned, they made both conceptual errors and 

computational errors running the Integrated Assessment Models.  The authors of the three IAM 

models did not make the computations and were not responsible for the results.  The most 

fundamental conceptual error by the IWG is that they measured the wrong SCC.  They chose to 

evaluate the SCC assuming zero mitigation not only today, but also forever.   

A second serious problem with the IWG exercise is that they did not run the models 

correctly. For example, DICE computes both the GDP and the discount rate to make sure that 

these values are internally consistent with the assumptions. The IWG ignored the estimates by 

DICE and instead imposed arbitrary and inconsistent assumptions of their own.  It was not really 

the DICE model that generated the results of the IWG reports.   The IWG calculations were 

made given assumptions of the committee.    

	 III.	 Computing	the	SCC	with	DICE	

This report relies extensively on the DICE model.  The DICE model is the first 

(Nordhaus 1991) and probably the most well-known climate change Integrated Assessment 

Model.  It has been used by numerous authors to explore mitigation, adaptation, and policy 

alternatives over the last 24 years.  I personally have used the DICE model before to explore the 

effectiveness of sequestering carbon in forests (Sohngen and Mendelsohn 2003) and to examine 

how forest management affects the carbon emissions from land use (Sohngen and Mendelsohn 

2014).  In this report, we utilize DICE2013 which is the most recent version of DICE and is the 

version used in The Climate Casino (Nordhaus 2013). 

The DICE model (Nordhaus 2013) is designed to determine the optimal level of 

mitigation that equates marginal cost to marginal damage at every moment. The result is a set of 
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prices that rises over time as the concentration of greenhouse gases rise over time. Because these 

prices are optimal, they are equal to the marginal damage of an emission at each moment of time. 

They consequently reflect the social cost of carbon at that moment.  We focus in this discussion 

on the price of carbon dioxide in 2015, the current marginal damage of a ton of emission today.   

We explore several issues using DICE.  First, what role does the damage function have 

on the social cost of carbon?  Second, what impact does climate sensitivity have upon the social 

cost of carbon?  Third, how important is the internal discount rate in DICE?  Fourth, how 

sensitive are the optimal social cost of carbon values in DICE to uncertainty?          

	 A.	 Damage	Function	

  A feature of DICE that is critical to understanding the social cost of carbon is the 

damage function.  The DICE2013 model assumes that the percent of GDP lost per year to 

climate damage increases with the square of temperature change.  So as global temperature 

doubles, the damage quadruples.  When temperatures are 2°C warmer than preindustrial global 

temperatures, the model assumes climate damage would be equal to 1% percent of GDP. When 

temperatures are 4°C, the model assumes damage would be 4% of GDP and when temperatures 

are 8°C, damages would be 16% of GDP.  As discussed below, I believe the empirical evidence 

suggests it is appropriate to modify these assumptions.   

Global temperature today is about 0.8°C warmer than the preindustrial temperature.  

According to DICE2013, there should already be a global damage from climate change in 2015 

equal to $173 billion annually.   Clearly damage this great would be conspicuous.  In practice, 

however, it is very difficult to detect this annual global damage today, even with careful 

scientific measurements.   
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 There are detectable physical effects associated with the 0.8°C warming since 

preindustrial times.  For example, in some places, the warming over the last 100 years has 

reduced crop yield/ha a few percent (IPCC 2013b) which is clearly a damage. However, carbon 

fertilization has increased crop yields by a far larger amount across the entire world (Kimball 

1983) suggesting a sizable net benefit.  The warmer temperatures are encouraging ecosystems to 

move poleward (IPCC 2013b) which is a change that may lead to damage in some places.  For 

example, plants have flowered earlier, birds have arrived sooner after winter, and birds have over 

wintered in more northern locations in the northern hemisphere.  However, the carbon 

fertilization of trees has also led to an overall increase in ecosystem productivity and standing 

biomass (Gerber et al. 2004) which is an overall net benefit for ecosystems.   

 This myriad of small changes has led to small economic gains and losses across affected 

sectors and locations.  They are small enough that they require very careful measurement to 

detect.  They are dwarfed by the change over the same time period caused by the increase in 

human population from roughly 1 billion in 1880 to 7 billion today and the increase in economic 

activity from roughly $1 trillion in 1890 to $75 trillion today (Maddison 2003). In order to 

measure the damage from climate change over time, one must discern what changes over time 

are due to the underlying growth in the economy and the human population versus what is due to 

the change in carbon dioxide, rainfall, and temperature.    

Empirical studies done across the world using multiple methods have measured the 

climate sensitivity of the current economy and ecosystem. These studies reveal a hill-shaped 

relationship between the human welfare or income in each sector and temperature and 

precipitation. The response function tends to look like Figure 3.  There is an optimal temperature, 

T*, for every sector.  The income of value of that sector is maximized at T*. If a place happens 
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to have a cooler temperature, Tc, then the income will be lower at Yc.  Similarly, if the location is 

too warm, Tw, the income will also be lower.  This response function implies there is an optimal 

climate for each sector that maximizes income or welfare as a function of both temperature and 

precipitation.  That maximum is different for each sector. For example, agriculture appears to be 

maximized in temperate wet climates whereas forestry is maximized in subtropical wet climates. 

Places that are currently too cool will therefore benefit from warming as they rise towards the 

optimum. Places that are too warm will be damaged by warming as they are pushed further from 

the optimum.   The consequence of climate change is not the same across the planet. 

 

Figure 3: Generic Impact of Climate Change on a Climate-Sensitive Sector   

 

These results provide insight into the effect of the change in climate we have seen to date. 

The historic damage from warming has been concentrated in the low latitudes, and the historic 
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benefit from warming has been concentrated in the mid- to high latitudes.  Minnesota, for 

example, has likely benefited from global warming to date because of increased agricultural and 

ecosystem productivity.  Looking across the planet, the magnitude of the global benefit to date is 

slightly higher than the magnitude of the global loss to date.  The immediate impact of a warmer, 

wetter, and carbon dioxide enriched environment is likely to be beneficial from 1.5°C to 2°C 

above preindustrial levels (0.7°C to 1.2°C warmer than today).       

Similar results follow from ecological studies of global ecosystems (Gerber et al 2004). 

The harm from historical changes in temperature has been more than offset by the benefits of 

higher levels of CO2.  On average, the warmer, wetter, CO2 -enriched climate has allowed the 

world’s ecosystems to be more productive with more standing biomass.2    

How well does the DICE damage function reflect our current understanding of climate 

damage?   DICE clearly captures the insight that higher future temperatures are going to lead to 

ever increasing harm.  The problem with the DICE functional form is that it over-predicts 

damage in the near term.  It effectively assumes that the preindustrial temperature in 1900 was 

optimal for mankind and all warming since then has been harmful.  In this report, we adjust the 

DICE damage function so that damage does not begin until temperatures warm 1.5°C to 2°C 

above preindustrial levels. That is, we assume that when global temperature reaches 0.7°C to 

1.2°C warmer than today, net global damage will begin.   

                                                            
2 The fact that the net impact of climate change has been slightly beneficial to date does 

not imply that climate change will remain harmless regardless of increases in temperature.  
Empirical evidence suggests that, past a certain point, the damage will increase nonlinearly and 
the benefits will shrink away (IPCC 2013b; Mendelsohn and Neumann 1999; Mendelsohn 2001; 
Mendelsohn and Dinar 2009).   
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The modified DICE model predicts the optimal SCC is between $4 and $6/ton. Figure 4, 

calculates the annual damage that a ton of carbon dioxide emission today is expected to cause 

into the future.  The figure illustrates the present value of the damage each year.  The SCC is 

equal to the sum of all these effects.  The damage does not begin until temperatures reach 1.5°C 

to 2°C above preindustrial levels, rapidly accelerates, and then falls with time. In this optimal 

scenario, DICE predicts that global temperatures will rise to 4°C to 4.3°C in 2150 and then 

gradually fall.    

 

Figure 4: Annual Damage of 1 Ton of Emission in 2015  

 

Note: The annual damage is measured in present value dollars. Figure assumes DICE 

discount rate (starting at 5% today, falling to 2.7% in 2200), a climate sensitivity of 3, optimal 

mitigation, and damage functions that assume the optimal temperature is 1.5°C above 

preindustrial and 2.0°C above preindustrial.     

‐0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

2000 2050 2100 2150 2200 2250 2300 2350

2.0°C

1.5°C



16 

	 B.	 Discount	Rates	

  The DICE model has its own internal measure of the discount rate that depends on the 

path of global consumption over time.  The discount rate changes as the growth of per capita 

consumption changes.  The model estimates that the current discount rate is 5%.  As the rate of 

GDP growth slows over time, the DICE model predicts that the discount rate should fall to about 

3.5% in 2100 and 2.7% in 2200.   

The approach taken by the IWG divorces the interest rate from the path of GDP.  This is 

inconsistent with the DICE model and economic theory.  The IWG examines a fixed interest rate 

over all time and explores three constant discount rates of 5%, 3%, and 2.5%.  The 5% rate 

matches the current 2% growth in per capita consumption but is too high for the far future when 

the economy slows.  The 2.5% discount rate may be appropriate for the 23rd century but not for 

today.  

The choice of discount rate matters a great deal to the SCC.  This is because most of the 

damage from a ton of carbon dioxide emissions happens far into the future.  The lower the 

weight given to future effects relative to present effects (the higher the discount rate), the lower 

will be the SCC.   

Table 1 compares the SCC estimates using alternative discount rates and the modified 

DICE model.  For each case, Table 1 compares the SCC calculated with the DICE variable 

discount rates and the SCC calculated with constant discount rates of 3%, 4%, 5%, and 7%.  

OMB suggests the 7% is the appropriate discount rate for regulations that force the private sector 

to make investments in projects with uncertain rewards.    
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Table 1: DICE SCC estimates by discount rate and damage function  

Discount 

Rate 

Damage 

relative 

to +1.5°C

Damage 

relative 

to +2°C  

DICE rate 6 4 

3% 15 10 

4% 7 4 

5% 4 2 

7% 1 0.5 

 

Note: Chosen SCC is optimal. Climate sensitivity is assumed to be 3.  

Given this set of choices, what discount rate is appropriate for the SCC?  The discount 

rate is the “price of time”.  The IWG argues that policy makers can choose whatever discount 

rate pleases them.  However, if policy makers choose one discount rate for greenhouse gases and 

another discount rate for every other public investment, they are implicitly arguing that climate 

change should have a different “price of time”.  There is no theoretical support for this idea.  If a 

lower discount rate is used for greenhouse gases than other investments, policy makers are 

effectively arguing that greenhouse gas mitigation should have a lower rate of return than other 

public investments in national security, health, education, safety, and infrastructure.  It is not at 

all clear why this is socially desirable.   

The discount rate that is internal to DICE (first row) changes over time as the economy 

changes.  It is theoretically sound because it matches the growth in per capita consumption over 
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time.  Comparing the SCC in the first row with the remaining rows suggests that the constant 

discount rate that would yield the DICE SCC is about 4%. With the modified damage functions, 

DICE predicts the SCC should be $4-$6.  

	 C.	 Climate	Sensitivity	

 Another important factor to consider in climate models is the climate sensitivity, the long 

run change in global temperature associated with doubling greenhouse gases.  The IPCC (2013a) 

argues that climate sensitivity lies between 1.5 and 4.5 with a most likely value of 3. A climate 

sensitivity of 3 implies that doubling greenhouse gases in the atmosphere would increase long 

run temperature by 3°C.  Recent evidence, as discussed in the reports of Professors Lindzen, 

Happer, and Spencer, suggest that the IPCC climate sensitivity is overstated. Roy Spencer notes 

that historical observed warming has been much less than climate models predicted.  This raises 

questions about whether the range of climate sensitivity suggested by the IPCC is too high. It 

also suggests that even if the IPCC has the correct climate sensitivity, the actual increase in 

temperature will be much slower. W. Happer (2015) argues that climate sensitivity is likely to be 

1, which would be the effect of just increasing carbon dioxide alone.  He argues there are no 

positive feedbacks from this forcing which would cause the climate sensitivity to be higher. 

Richard Lindzen (2015) argues in his testimony that the climate sensitivity could be between 

0.85C and 1.5C and is very likely less than 2C.  

Table 2 compares the SCC one might get at different climate sensitivities using the 

modified DICE model.  We show the results in Table 2 for the two versions of the modified 

damage function.  If the climate sensitivity is 1.5 (as Dr. Lindzen and others have suggested), the 

SCC lies between $0.30 and $0.80/ton. This demonstrates that if the climate sensitivity is low, 

climate change is not a grave problem.  If the climate sensitivity value is 2.0, the SCC lies 
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between $1.10 and $2.00/ton.  If the IPCC is correct and the climate sensitivity is 3, the SCC lies 

between $4 and $6/ton.  In the unlikely chance that the climate sensitivity is 4.5, the SCC lies 

between $10 and $14/ton.  The value of the SCC is sensitive to low climate sensitivities because 

they affect temperatures this century.     

 

Table 2 SCC values for different climate sensitivities and damage functions 

Climate 

Sensitivity 

Damage 

Delay to 

1.5°C 

Damage 

Delay to 

2°C 

1.0 .1 0.0 

1.5 .8 0.3 

2.0 2 1.1 

2.5 4 2.3 

3.0 6 4 

Optimal SCC values calculated using DICE interest rates.  

	 C.	 Uncertainty	

The IWG argues that there is a great deal of uncertainty surrounding far future damage.  

That is especially true if one assumes that there will be no mitigation.  This affects the SCC if 

one also assumes that the discount rate is too low. However, using the optimal SCC, the DICE 

model discount rates, and a realistic damage function, we find that far future damage has little 

bearing on the value of the current SCC.  Using these assumptions, it is clear that the SCC is not 

that sensitive to far future damage. What affects the current SCC is the damage over the next 
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century. What happens beyond 2100 has little effect on the marginal damage of an emission 

today. The SCC is robust against a range of plausible long range scenarios.   

My estimate for the SCC in 2015 is between $4 and $6/ton.  It assumes the IPCC estimate 

of a climate sensitivity of 3 which may be conservative in light of the testimony of Professor 

Lindzen and Professor Hopper. My estimate also assumes that temperatures increase at the rate 

predicted by climate models which may be conservative given the empirical evidence of the 

much slower actual warming trends reported by Professor Spencer.  The expected value of the 

set of optimal runs using DICE in Table 2 is $7/ton.  The 95% confidence interval given this 

uncertainty is between 0 and $15/ton.  Taking all the different optimal SCC’s in Table 2 yields 

the probability distribution of the SCC shown in Figure 5. 

 

Figure 5: Probability distribution of SCC 
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D.	 Conclusions	

Using the internal discount rate of the DICE model (starting at 5% today, falling to 2.7% 

in 2200),  the emission and GDP forecasts of DICE, a climate sensitivity of 3, and a delay of 

1.5°C to 2.0°C in the damage function of DICE, my estimate of the SCC is $4-$6.   My 

estimate is conservative given the recent evidence in the reports of Professors Lindzen and 

Happer, which suggest the IPCC climate sensitivity is overstated. My estimate is also 

conservative in light of the evidence presented by Roy Spencer that the historic trend of 

observed warming is much lower than climate models predicted. A slower rate of warming 

postpones damage further into the future no matter what the climate sensitivity is and leads to a 

lower SCC. 
 If the climate sensitivity is 1 as suggested by W. Happer (2015), the SCC is less than 

$.10/ton.  Richard Lindzen (2015) argues in his testimony that the climate sensitivity could be 

between 0.85C and 1.5C and is very likely less than 2C.  If the climate sensitivity is 1.5 (as Dr. 

Lindzen and others have suggested), the SCC lies between $0.30 and $0.80/ton, as shown in 

Table 2 of the Report. If the climate sensitivity value is 2.0, the SCC lies between $1.10 and 

$2.00/ton, as shown in Table 2. 

Finally, it would be inadvisable to adopt the current Federal SCC as estimated by the 

Federal Interagency Working Group on Social Cost of Carbon (IWG).  Although well 

intentioned, the IWG made numerous theoretical and modeling errors and significantly 

overestimated the SCC.   

IV. Experience

I graduated in 1973 from Harvard College, BA, Magna Cum Laude. I graduated in 1979 

from Yale Economics Department, PhD. I was an assistant professor at the University of 
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Washington, Seattle 1979-1983. I was a visiting assistant professor at University of Michigan 

1983-1984. I have been a professor at Yale University since 1984.     

My official title at Yale University is the Edwin Weyerhaeuser Davis Professor at the 

School of Forestry and Environmental Studies, with appointments in the Department of 

Economics and the School of Management.  For the last 22 years, I have been working on 

measuring the benefits of mitigating greenhouse gas emissions. I have written 8 books and 63 

peer reviewed articles on climate change impacts. Measuring these benefits requires a careful 

integration of natural science and economics. The two major results of my research on climate 

change are that (1) greenhouse gas emissions will cause future impacts but (2) adaptation will 

dampen the harm that otherwise would happen.  As people, firms, and governments come face to 

face with climate change, they will adjust their investments and behavior to cope with this 

changing future world.  The effort to adapt involves additional cost and some damage will 

remain, but these losses are small compared to the “potential damage” with no adaptation that 

most climate studies are fixated on.    
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